Ethical Alternatives to Experiments with Novel Potential Pandemic Pathogens
article has not abstract
Vyšlo v časopise:
Ethical Alternatives to Experiments with Novel Potential Pandemic Pathogens. PLoS Med 11(5): e32767. doi:10.1371/journal.pmed.1001646
Kategorie:
Policy Forum
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001646
Souhrn
article has not abstract
Zdroje
1. ImaiM, WatanabeT, HattaM, DasSC, OzawaM, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428.
2. HerfstS, SchrauwenEJ, LinsterM, ChutinimitkulS, de WitE, et al. (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336: 1534–1541.
3. Klotz LC, Sylvester EJ (2012) The unacceptable risks of a man-made pandemic. Bulletin of the Atomic Sciences. Available: http://thebulletin.org/unacceptable-risks-man-made-pandemic. Accessed 15 April 2014.
4. WebsterRG, BeanWJ, GormanOT, ChambersTM, KawaokaY (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179.
5. FouchierRA, Garcia-SastreA, KawaokaY (2013) H5N1 virus: transmission studies resume for avian flu. Nature 493: 609.
6. FouchierRA, KawaokaY, CardonaC, CompansRW, FouchierRA, et al. (2013) Avian flu: Gain-of-function experiments on H7N9. Nature 500: 150–151.
7. FouchierRA, KawaokaY, CardonaC, CompansRW, Garcia-SastreA, et al. (2013) Gain-of-function experiments on H7N9. Science 341: 612–613.
8. MainesTR, ChenLM, Van HoevenN, TumpeyTM, BlixtO, et al. (2011) Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413: 139–147.
9. RichardM, SchrauwenEJ, de GraafM, BestebroerTM, SpronkenMI, et al. (2013) Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 501: 560–563.
10. Sutton TC, Finch C, Shao H, Angel M, Chen H, et al.. (2014) airborne transmission of highly pathogenic H7N1 influenza in ferrets. J Virol. E-pub ahead of print. doi:10.1128/JVI.02765-13
11. SheltonH, RobertsKL, MolestiE, TempertonN, BarclayWS (2013) Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol 94: 1220–1229.
12. ZhangY, ZhangQ, KongH, JiangY, GaoY, et al. (2013) H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340: 1459–1463.
13. QiaoC, LiuQ, BawaB, ShenH, QiW, et al. (2012) Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. J Gen Virol 93: 2337–2345.
14. SorrellEM, WanH, ArayaY, SongH, PerezDR (2009) Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc Natl Acad Sci U S A 106: 7565–7570.
15. KimbleJB, SorrellE, ShaoH, MartinPL, PerezDR (2011) Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc Natl Acad Sci U S A 108: 12084–12088.
16. HenkelRD, MillerT, WeyantRS (2012) Monitoring select agent theft, loss and release reports in the United States–2004–2010. Appl Biosaf 18: 171–180.
17. Hottes AK, Rusek B, Sharples F, Committee on Anticipating Biosecurity Challenges of the Global Expansion of High Containment Biological Laboratories, National Academy of Sciences and National Research Council (2012) Biosecurity challenges of the global expansion of high-containment biological laboratories: summary of a workshop. Washington (District of Columbia): National Academies Press.
18. CasadevallA, EnquistL, ImperialeMJ, KeimP, OsterholmMT, et al. (2013) Redaction of sensitive data in the publication of dual use research of concern. MBio 5: e00991–13.
19. MerlerS, AjelliM, FumanelliL, VespignaniA (2013) Containing the accidental laboratory escape of potential pandemic influenza viruses. BMC Med 11: 252.
20. LipsitchM, CohenT, CooperB, RobinsJM, MaS, et al. (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300: 1966–1970.
21. Lloyd-SmithJO, SchreiberSJ, KoppPE, GetzWM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438: 355–359.
22. US Department of Health and Human Services (2007) Interim pre-pandemic planning guidance: community strategy for pandemic influenza mitigation in the United States–early targeted layered use of nonpharmaceutical interventions. Washington (District of Columbia): US Department of Health and Human Services.
23. Van KerkhoveMD, HirveS, KoukounariA, MountsAW (2013) Estimating age-specific cumulative incidence for the 2009 influenza pandemic: a meta-analysis of A(H1N1)pdm09 serological studies from 19 countries. Influenza Other Respir Viruses 7: 872–886.
24. Van KerkhoveMD, RileyS, LipsitchM, GuanY, MontoAS, et al. (2012) Comment on “Seroevidence for H5N1 influenza infections in humans: meta-analysis”. Science 336: 1506.
25. BernsKI, CasadevallA, CohenML, EhrlichSA, EnquistLW, et al. (2012) Public health and biosecurity. Adaptations of avian flu virus are a cause for concern. Science 335: 660–661.
26. BarashJR, ArnonSS (2013) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209: 183–191.
27. RelmanDA (2013) “Inconvenient truths” in the pursuit of scientific knowledge and public health. J Infect Dis 209: 170–172.
28. Interacademy Panel on International Issues (2005) IAP statement on biosecurity. Trieste (Italy): Interacademy Panel on International Issues.
29. LipsitchM, BloomBR (2012) Rethinking biosafety in research on potential pandemic pathogens. MBio 3: e00360–12.
30. BachFH, FishmanJA, DanielsN, ProimosJ, AndersonB, et al. (1998) Uncertainty in xenotransplantation: individual benefit versus collective risk. Nat Med 4: 141–144.
31. OrdT, HillerbrandR, SandbergA (2010) Probing the improbable: methodological challenges for risks with low probabilities and high stakes. J Risk Res 13: 191–205.
32. Presidential Commission for the Study of Bioethical Issues (2010) New directions: the ethics of synthetic biology and emerging technologies. Washington (District of Columbia): Presidential Commission for the Study of Bioethical Issues.
33. PattersonAP, TabakLA, FauciAS, CollinsFS, HowardS (2013) Research funding. A framework for decisions about research with HPAI H5N1 viruses. Science 339: 1036–1037.
34. JaffeH, PattersonAP, LurieN (2013) Extra oversight for H7N9 experiments. Science 341: 713–714.
35. JaffeHW, PattersonAP, LurieN (2013) Avian flu: extra oversight for H7N9 experiments. Nature 500: 151.
36. MahmoudA (2013) Gain-of-function research: unproven technique. Science 342: 310–311.
37. PicaN, PaleseP (2013) Toward a universal influenza virus vaccine: prospects and challenges. Annu Rev Med 64: 189–202.
38. LipsitchM, PlotkinJB, SimonsenL, BloomB (2012) Evolution, safety, and highly pathogenic influenza viruses. Science 336: 1529–1531.
39. World Organisation for Animal Health (2013) WAHID Interface [database]. Available: http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Diseasetimeseries. Accessed 28 December 2013.
40. BaoY, BolotovP, DernovoyD, KiryutinB, ZaslavskyL, et al. (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82: 596–601.
41. US National Center for Biotechnology Information (2013) Influenza Virus Resource [database]. Available: http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=database. Accessed 27 December 2013.
42. The GISAID Initiative (2013) EpiFlu Database [database]. Available: http://platform.gisaid.org/epi3/frontend#3ef74c. Accessed 14 April 2013.
43. RamakrishnanMA, TuZJ, SinghS, ChockalingamAK, GramerMR, et al. (2009) The feasibility of using high resolution genome sequencing of influenza A viruses to detect mixed infections and quasispecies. PLoS ONE 4: e7105.
44. PoonLL, ChanKH, ChuDK, FungCC, ChengCK, et al. (2011) Viral genetic sequence variations in pandemic H1N1/2009 and seasonal H3N2 influenza viruses within an individual, a household and a community. J Clin Virol 52: 146–150.
45. Leung NH, Worby CJ, Hanage WP, Lipsitch M, Cowling BJ (2013) Human-to-human transmission of H7N9 in a family: “probable” vs “possible”. BMJ Online Rapid Response. Available: http://www.bmj.com/content/347/bmj.f4752/rr/657652. Accessed 15 April 2014.
46. GabbardJD, DlugolenskiD, Van RielD, MarshallN, GallowaySE, et al. (2014) Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model. J Virol 88: 1502–1512.
47. World Health Organization (2014) Human infection with avian influenza virus–update. Available: http://www.who.int/csr/don/2014_01_31/en/. Accessed 28 February 2014.
48. MorensDM, TaubenbergerJK, FauciAS (2013) Pandemic influenza viruses–hoping for the road not taken. N Engl J Med 368: 2345–2348.
49. Wain-HobsonS (2013) Pandemic influenza viruses: time to recognize our inability to predict the unpredictable and stop dangerous gain-of-function experiments. EMBO Mol Med 5: 1637–1641.
50. TharakaramanK, RamanR, ViswanathanK, StebbinsNW, JayaramanA, et al. (2013) Structural determinants for naturally evolving H5N1 hemagglutinin to switch its receptor specificity. Cell 153: 1475–1485.
51. GongLI, SuchardMA, BloomJD (2013) Stability-mediated epistasis constrains the evolution of an influenza protein. Elife 2: e00631.
52. KryazhimskiyS, DushoffJ, BazykinGA, PlotkinJB (2011) Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 7: e1001301.
53. TrockSC, BurkeSA, CoxNJ (2012) Development of an influenza virologic risk assessment tool. Avian Dis 56: 1058–1061.
54. SheltonH, Ayora-TalaveraG, RenJ, LoureiroS, PicklesRJ, et al. (2011) Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential. J Virol 85: 1875–1880.
55. IskanderJ, StrikasRA, GensheimerKF, CoxNJ, ReddSC (2013) Pandemic influenza planning, United States, 1978–2008. Emerg Infect Dis 19: 879–885.
56. Wellcome Trust (2014) Influenza. Available: http://www.wellcome.ac.uk/About-us/Policy/Spotlight-issues/Influenza/index.htm. Accessed 15 April 2014.
57. Garrett L (2013 October 15) Biology's brave new world: the promise and perils of the synbio revolution. Foreign Affairs. Available: http://www.foreignaffairs.com/articles/140156/laurie-garrett/biologys-brave-new-world. Accessed 15 April 2014.
58. BreithauptH (2014) Flu season: an interview with Jeffery K. Taubenberger, Chief of the Viral Pathogenesis and Evolution Section at the US National Institute of Allergy and Infectious Diseases. EMBO Rep 15: 212–217.
59. BelserJA, KatzJM, TumpeyTM (2011) The ferret as a model organism to study influenza A virus infection. Dis Model Mech 4: 575–579.
60. BelserJA, MainesTR, KatzJM, TumpeyTM (2013) Considerations regarding appropriate sample size for conducting ferret transmission experiments. Future Microbiol 8: 961–965.
61. PaleseP, WangTT (2012) H5N1 influenza viruses: facts, not fear. Proc Natl Acad Sci U S A 109: 2211–2213.
62. LipsitchM (2013) Avian influenza: ferret H7N9 flu model questioned. Nature 501: 33.
63. JongesM, MeijerA, FouchierRA, KochG, LiJ, et al. (2013) Guiding outbreak management by the use of influenza A(H7Nx) virus sequence analysis. Euro Surveill 18: 20460.
64. de WitE, MunsterVJ, van RielD, BeyerWE, RimmelzwaanGF, et al. (2010) Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 84: 1597–1606.
65. SteelJ, LowenAC, MubarekaS, PaleseP (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5: e1000252.
66. LongJS, HowardWA, NunezA, MoncorgeO, LycettS, et al. (2013) The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus lineage. J Virol 87: 9983–9996.
67. HerfstS, ChutinimitkulS, YeJ, de WitE, MunsterVJ, et al. (2010) Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol 84: 3752–3758.
68. BloomJD, GongLI, BaltimoreD (2010) Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328: 1272–1275.
69. HerlocherML, TrusconR, EliasS, YenHL, RobertsNA, et al. (2004) Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J Infect Dis 190: 1627–1630.
70. ChaoDL, BloomJD, KochinBF, AntiaR, LonginiIMJr (2012) The global spread of drug-resistant influenza. J R Soc Interface 9: 648–656.
71. VeyM, OrlichM, AdlerS, KlenkHD, RottR, et al. (1992) Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188: 408–413.
72. WoodGW, McCauleyJW, BashiruddinJB, AlexanderDJ (1993) Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol 130: 209–217.
73. LondtBZ, BanksJ, AlexanderDJ (2007) Highly pathogenic avian influenza viruses with low virulence for chickens in in vivo tests. Avian Pathol 36: 347–350.
74. Jimenez-AlbertoA, Alvarado-FacundoE, Ribas-AparicioRM, Castelan-VegaJA (2013) Analysis of adaptation mutants in the hemagglutinin of the influenza A(H1N1)pdm09 virus. PLoS ONE 8: e70005.
75. LarssonP, KassonPM (2013) Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models. PLoS Comput Biol 9: e1002950.
76. RipollDR, KhavrutskiiIV, ChaudhuryS, LiuJ, KuschnerRA, et al. (2012) Quantitative predictions of binding free energy changes in drug-resistant influenza neuraminidase. PLoS Comput Biol 8: e1002665.
77. TharakaramanK, JayaramanA, RamanR, ViswanathanK, StebbinsNW, et al. (2013) Glycan receptor binding of the influenza A virus H7N9 hemagglutinin. Cell 153: 1486–1493.
78. CauldwellAV, MoncorgeO, BarclayWS (2013) Unstable polymerase-nucleoprotein interaction is not responsible for avian influenza virus polymerase restriction in human cells. J Virol 87: 1278–1284.
79. TamuriAU, Dos ReisM, HayAJ, GoldsteinRA (2009) Identifying changes in selective constraints: host shifts in influenza. PLoS Comput Biol 5: e1000564.
80. dos ReisM, TamuriAU, HayAJ, GoldsteinRA (2011) Charting the host adaptation of influenza viruses. Mol Biol Evol 28: 1755–1767.
81. WongEH, SmithDK, RabadanR, PeirisM, PoonLL (2010) Codon usage bias and the evolution of influenza A viruses. Codon usage biases of influenza virus. BMC Evol Biol 10: 253.
82. ZhangQ, ShiJ, DengG, GuoJ, ZengX, et al. (2013) H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341: 410–414.
83. GustinKM, KatzJM, TumpeyTM, MainesTR (2013) Comparison of the levels of infectious virus in respirable aerosols exhaled by ferrets infected with influenza viruses exhibiting diverse transmissibility phenotypes. J Virol 87: 7864–7873.
84. ChouYY, AlbrechtRA, PicaN, LowenAC, RichtJA, et al. (2011) The M segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the guinea pig model. J Virol 85: 11235–11241.
85. YenHL, LiangCH, WuCY, ForrestHL, FergusonA, et al. (2011) Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci U S A 108: 14264–14269.
86. KrammerF, PaleseP (2013) Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol 3: 521–530.
87. WeiCJ, YassineHM, McTamneyPM, GallJG, WhittleJR, et al. (2012) Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci Transl Med 4: 147ra114.
88. SchmitzN, BeerliRR, BauerM, JegerlehnerA, DietmeierK, et al. (2012) Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection. Eur J Immunol 42: 863–869.
89. HughesB, HaydenF, PerikovY, HombachJ, TamJS (2012) Report of the 5th meeting on influenza vaccines that induce broad spectrum and long-lasting immune responses, World Health Organization, Geneva, 16–17 November 2011. Vaccine 30: 6612–6622.
90. DoyleTM, JaentschkeB, Van DomselaarG, HashemAM, FarnsworthA, et al. (2013) The universal epitope of influenza A viral neuraminidase fundamentally contributes to enzyme activity and viral replication. J Biol Chem 288: 18283–18289.
91. EverittAR, ClareS, PertelT, JohnSP, WashRS, et al. (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484: 519–523.
92. DormitzerPR, SuphaphiphatP, GibsonDG, WentworthDE, StockwellTB, et al. (2013) Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med 5: 185ra168.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2014 Číslo 5
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- Provider-Initiated HIV Testing and Counselling for Children
- Achieving the HIV Prevention Impact of Voluntary Medical Male Circumcision: Lessons and Challenges for Managing Programs
- Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis
- Barriers to Provider-Initiated Testing and Counselling for Children in a High HIV Prevalence Setting: A Mixed Methods Study