Cardiovascular disease: The rise of the genetic risk score
In a Perspective, Joshua Knowles and Euan Ashley discuss the potential for use of genetic risk scores in clinical practice
Vyšlo v časopise:
Cardiovascular disease: The rise of the genetic risk score. PLoS Med 15(3): e32767. doi:10.1371/journal.pmed.1002546
Kategorie:
Perspective
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002546
Souhrn
In a Perspective, Joshua Knowles and Euan Ashley discuss the potential for use of genetic risk scores in clinical practice
Zdroje
1. Kannel WB. Factors of Risk in the Development of Coronary Heart Disease—Six-Year Follow-up Experience: The Framingham Study. Ann Intern Med. 1961;55: 33. 13751193
2. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97: 1837–1847. 9603539
3. Gluckman TJ, Kovacs RJ, Stone NJ, Damalas D, Mullen JB, Oetgen WJ. The ASCVD Risk Estimator App: From Concept to the Current State. J Am Coll Cardiol. 2016;67: 350–352. doi: 10.1016/j.jacc.2015.10.068 26796407
4. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380: 572–580. doi: 10.1016/S0140-6736(12)60312-2 22607825
5. Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, et al. Prediction of coronary heart disease risk using a genetic risk score: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2007;166: 28–35. doi: 10.1093/aje/kwm060 17443022
6. Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48: 1162–1170. doi: 10.1038/ng.3660 27618448
7. Preuss M, König IR, Thompson JR, Erdmann J, Absher D, Assimes TL, et al. Design of the Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) StudyClinical Perspective: A Genome-Wide Association Meta-analysis Involving More Than 22 000 Cases and 60 000 Controls. Circulation: Genomic and Precision Medicine. 2010;3: 475–483.
8. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376: 1393–1400. doi: 10.1016/S0140-6736(10)61267-6 20971364
9. Ganna A, Magnusson PKE, Pedersen NL, de Faire U, Reilly M, Arnlöv J, et al. Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler Thromb Vasc Biol. 2013;33: 2267–2272. doi: 10.1161/ATVBAHA.113.301218 23685553
10. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27: 112–157.
11. Pepe MS, Fan J, Feng Z, Gerds T, Hilden J. The Net Reclassification Index (NRI): a Misleading Measure of Prediction Improvement Even with Independent Test Data Sets. Stat Biosci. 2015;7: 282–295. doi: 10.1007/s12561-014-9118-0 26504496
12. Hilden J, Gerds TA. A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med. 2014;33: 3405–3414. doi: 10.1002/sim.5804 23553436
13. Kerr KF, Janes H. First things first: risk model performance metrics should reflect the clinical application. Stat Med. 2017;36: 4503–4508. doi: 10.1002/sim.7341 29156498
14. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461: 747–753. doi: 10.1038/nature08494 19812666
15. A Decade Later, Human Genome Project Yields Few New Cures. The New York Times. 12 Jun 2010. Available from: http://www.nytimes.com/2010/06/13/health/research/13genome.html?pagewanted=all. Accessed 19 Feb 2018.
16. Collins R. What makes UK Biobank special? Lancet. 2012;379: 1173–1174. doi: 10.1016/S0140-6736(12)60404-8 22463865
17. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015;12(3): e1001779. doi: 10.1371/journal.pmed.1001779 25826379
18. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over one million people identifies 535 novel loci for blood pressure [Internet]. bioRxiv. 2017. p. 198234. doi: 10.1101/198234
19. Zhang Y, Qi G, Park J-H, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits and implications for the future [Internet]. bioRxiv. 2017. p. 175406. doi: 10.1101/175406
20. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med. 2016;375: 2349–2358. doi: 10.1056/NEJMoa1605086 27959714
21. Khera AV, Chaffin M, Aragam K, Emdin CA, Klarin D, Haas M, et al. Genome-wide polygenic score to identify a monogenic risk-equivalent for coronary disease [Internet]. bioRxiv. 2017. p. 218388. doi: 10.1101/218388
22. Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, et al. Genomic risk prediction of coronary artery disease in nearly 500,000 adults: implications for early screening and primary prevention [Internet]. bioRxiv. 2018. doi: 10.1101/250712
23. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8(1): e1000294. doi: 10.1371/journal.pbio.1000294 20126254
24. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536: 41–47. doi: 10.1038/nature18642 27398621
25. Assimes TL, Roberts R. Genetics: Implications for Prevention and Management of Coronary Artery Disease. J Am Coll Cardiol. 2016;68: 2797–2818. doi: 10.1016/j.jacc.2016.10.039 28007143
26. Fontaine-Bisson B, Renström F, Rolandsson O, MAGIC, Payne F, Hallmans G, et al. Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population. Diabetologia. 2010;53: 2155–2162. doi: 10.1007/s00125-010-1792-y 20571754
27. de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care. 2011;34: 121–125. doi: 10.2337/dc10-1265 20889853
28. Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, et al. Clinical interpretation and implications of whole-genome sequencing. JAMA. 2014;311: 1035–1045. doi: 10.1001/jama.2014.1717 24618965
29. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375: 1525–1535. doi: 10.1016/S0140-6736(10)60452-7 20435227
30. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017; doi: 10.1016/j.jacc.2017.11.006 29146535
31. Nayor M, Vasan RS. Recent Update to the US Cholesterol Treatment Guidelines: A Comparison With International Guidelines. Circulation. 2016;133: 1795–1806. doi: 10.1161/CIRCULATIONAHA.116.021407 27143546
32. Stone NJ, Robinson JG, Lichtenstein AH, Merz CNB, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63: 2889–2934. doi: 10.1016/j.jacc.2013.11.002 24239923
33. Bloss CS, Schork NJ, Topol EJ. Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med. 2011;364: 524–534. doi: 10.1056/NEJMoa1011893 21226570
34. Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, et al. Genetic Predisposition to High Blood Pressure and Lifestyle Factors: Associations With Midlife Blood Pressure Levels and Cardiovascular Events. Circulation. 2018;137: 653–661. doi: 10.1161/CIRCULATIONAHA.117.030898 29254930
35. Knowles JW, Zarafshar S, Pavlovic A, Goldstein BA, Tsai S, Li J, et al. Impact of a Genetic Risk Score for Coronary Artery Disease on Reducing Cardiovascular Risk: A Pilot Randomized Controlled Study. Front Cardiovasc Med. 2017;4: 53. doi: 10.3389/fcvm.2017.00053 28856136
36. Goldstein BA, Knowles JW, Salfati E, Ioannidis JPA, Assimes TL. Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example. Front Genet. 2014;5: 254. doi: 10.3389/fgene.2014.00254 25136350
37. Knowles JW, Assimes TL, Kiernan M, Pavlovic A, Goldstein B, Yank V, et al. Randomized trial of personal genomics for preventive cardiology: design and challenges. Circ Cardiovasc Genet. 2012;5: 368–376. doi: 10.1161/CIRCGENETICS.112.962746 22715281
38. Kullo IJ, Jouni H, Austin EE, Brown S-A, Kruisselbrink TM, Isseh IN, et al. Incorporating a Genetic Risk Score into Coronary Heart Disease Risk Estimates: Effect on LDL Cholesterol Levels (the MIGENES Clinical Trial). Circulation. 2016; CIRCULATIONAHA.115.020109.
39. O’Malley PG, Feuerstein IM, Taylor AJ. Impact of electron beam tomography, with or without case management, on motivation, behavioral change, and cardiovascular risk profile: a randomized controlled trial. JAMA. 2003;289: 2215–2223. doi: 10.1001/jama.289.17.2215 12734132
40. Johnson HM, Einerson J, Korcarz CE, Aeschlimann SE, Stein JH. Long-term effects of carotid screening on patient outcomes and behaviors. Arch Intern Med. 2011;171: 589–591. doi: 10.1001/archinternmed.2011.90 21444853
41. McEvoy JW, Blaha MJ, Nasir K, Yoon YE, Choi E-K, Cho I-S, et al. Impact of coronary computed tomographic angiography results on patient and physician behavior in a low-risk population. Arch Intern Med. 2011;171: 1260–1268. doi: 10.1001/archinternmed.2011.204 21606093
42. McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, et al. Feasibility of Obtaining Measures of Lifestyle From a Smartphone App: The MyHeart Counts Cardiovascular Health Study. JAMA Cardiol. 2017;2: 67–76. doi: 10.1001/jamacardio.2016.4395 27973671
43. MyGeneRank | Unlock your genetic risk [Internet]. [cited 19 Feb 2018]. Available from: https://mygenerank.scripps.edu/
44. Grady C, Cummings SR, Rowbotham MC, McConnell MV, Ashley EA, Kang G. Informed Consent. N Engl J Med. 2017;376: 856–867. doi: 10.1056/NEJMra1603773 28249147
45. Ashley EA, Hershberger RE, Caleshu C, Ellinor PT, Garcia JGN, Herrington DM, et al. Genetics and cardiovascular disease: a policy statement from the American Heart Association. Circulation. 2012;126: 142–157. doi: 10.1161/CIR.0b013e31825b07f8 22645291
46. Ng PC, Murray SS, Levy S, Venter JC. An agenda for personalized medicine. Nature. 2009;461: 724–726. doi: 10.1038/461724a 19812653
47. Regalado A. 23andMe to Share DNA Data with Researchers Using Apple iPhone. MIT Technology Review. 21 Mar 2016. Available from: https://www.technologyreview.com/s/601082/23andme-to-share-dna-data-with-researchers-using-apple-iphone/. Accessed 20 Feb 2018.
48. Hudson KL, Holohan MK. Keeping pace with the times—the Genetic Information Nondiscrimination Act of 2008. N Engl J Med 2008; 358:2661–2663 Available from: http://www.nejm.org/doi/full/10.1056/NEJMp0803964 doi: 10.1056/NEJMp0803964 18565857
49. Kraft SA, Constantine M, Magnus D, Porter KM, Lee SS-J, Green M, et al. A randomized study of multimedia informational aids for research on medical practices: Implications for informed consent. Clin Trials. 2017;14: 94–102. doi: 10.1177/1740774516669352 27625314
50. Dewey FE, Chen R, Cordero SP, Ormond KE, Caleshu C, Karczewski KJ, et al. Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence. PLoS Genet. 2011;7(9): e1002280. doi: 10.1371/journal.pgen.1002280 21935354
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2018 Číslo 3
- Pleiotropní účinky statinů na kardiovaskulární systém
- Účinnost alirocumabu v terapii hypercholesterolémie u jedinců s vysokým kardiovaskulárním rizikem
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- Nech brouka žít… Ať žije astma!
- Intermitentní hladovění v prevenci a léčbě chorob
Najčítanejšie v tomto čísle
- Forced anal examinations to ascertain sexual orientation and sexual behavior: An abusive and medically unsound practice
- Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: A longitudinal study based on a United Kingdom primary care database
- The current and potential health benefits of the National Health Service Health Check cardiovascular disease prevention programme in England: A microsimulation study
- Cardiovascular disease and multimorbidity: A call for interdisciplinary research and personalized cardiovascular care