#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions


Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.


Vyšlo v časopise: Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001068
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001068

Souhrn

Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.


Zdroje

1. RileyMA

WertzJE

2002 Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56 117 137

2. CornelisGR

2006 The type III secretion injectisome. Nat Rev Microbiol 4 811 825

3. BingleLE

BaileyCM

PallenMJ

2008 Type VI secretion: a beginner's guide. Curr Opin Microbiol 11 3 8

4. BoyerF

FichantG

BerthodJ

VandenbrouckY

AttreeI

2009 Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10 104

5. CascalesE

2008 The type VI secretion toolkit. EMBO Rep 9 735 741

6. FillouxA

HachaniA

BlevesS

2008 The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154 1570 1583

7. PukatzkiS

McAuleySB

MiyataST

2009 The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12 11 17

8. MaAT

McAuleyS

PukatzkiS

MekalanosJJ

2009 Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5 234 243

9. SuarezG

SierraJC

ErovaTE

ShaJ

HornemanAJ

2009 A type VI secretion system effector protein VgrG1 from Aeromonas hydrophila that induces host cell toxicity by ADP-ribosylation of actin. J Bacteriol

10. HoodRD

SinghP

HsuF

GuvenerT

CarlMA

2010 A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7 25 37

11. MougousJD

GiffordCA

RamsdellTL

MekalanosJJ

2007 Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9 797 803

12. AschtgenMS

GavioliM

DessenA

LloubesR

CascalesE

2010 The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol

13. ZhengJ

LeungKY

2007 Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66 1192 1206

14. MougousJD

CuffME

RaunserS

ShenA

ZhouM

2006 A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312 1526 1530

15. BonemannG

PietrosiukA

DiemandA

ZentgrafH

MogkA

2009 Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. Embo J 28 315 325

16. HsuF

SchwarzS

MougousJD

2009 TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol Microbiol 72 1111 1125

17. PukatzkiS

MaAT

RevelAT

SturtevantD

MekalanosJJ

2007 Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104 15508 15513

18. KanamaruS

2009 Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc Natl Acad Sci U S A 106 4067 4068

19. LeimanPG

BaslerM

RamagopalUA

BonannoJB

SauderJM

2009 Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106 4154 4159

20. PellLG

KanelisV

DonaldsonLW

HowellPL

DavidsonAR

2009 The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A 106 4160 4165

21. WiersingaWJ

van der PollT

WhiteNJ

DayNP

PeacockSJ

2006 Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4 272 282

22. BrettPJ

DeShazerD

WoodsDE

1998 Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48 Pt 1 317 320

23. KimHS

SchellMA

YuY

UlrichRL

SarriaSH

2005 Bacterial genome adaptation to niches: divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6 174

24. YuY

KimHS

ChuaHH

LinCH

SimSH

2006 Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol 6 46

25. NiermanWC

DeShazerD

KimHS

TettelinH

NelsonKE

2004 Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101 14246 14251

26. HaragaA

WestTE

BrittnacherMJ

SkerrettSJ

MillerSI

2008 Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76 5402 5411

27. SchellMA

UlrichRL

RibotWJ

BrueggemannEE

HinesHB

2007 Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64 1466 1485

28. ShalomG

ShawJG

ThomasMS

2007 In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153 2689 2699

29. PilatzS

BreitbachK

HeinN

FehlhaberB

SchulzeJ

2006 Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 74 3576 3586

30. WestTE

FrevertCW

LiggittHD

SkerrettSJ

2008 Inhalation of Burkholderia thailandensis results in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. Trans R Soc Trop Med Hyg 102 Suppl 1 S119 126

31. SunGW

ChenY

LiuY

TanGY

OngC

2010 Identification of a regulatory cascade controlling Type III Secretion System 3 gene expression in Burkholderia pseudomallei. Mol Microbiol

32. JanssensS

BeyaertR

2002 A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem Sci 27 474 482

33. WestTE

HawnTR

SkerrettSJ

2009 Toll-like receptor signaling in airborne Burkholderia thailandensis infection. Infect Immun

34. ChoiKH

SchweizerHP

2006 mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1 153 161

35. AschtgenMS

BernardCS

De BentzmannS

LloubesR

CascalesE

2008 SciN is an outer membrane lipoprotein required for Type VI secretion in enteroaggregative Escherichia coli. J Bacteriol

36. Enos-BerlageJL

GuvenerZT

KeenanCE

McCarterLL

2005 Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55 1160 1182

37. AubertDF

FlannaganRS

ValvanoMA

2008 A Novel Sensor Kinase-Response Regulator Hybrid Controls Biofilm Formation and Type VI Secretion System Activity in Burkholderia cenocepacia. Infect Immun

38. DereticV

SchurrMJ

YuH

1995 Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3 351 356

39. SauerK

CamperAK

EhrlichGD

CostertonJW

DaviesDG

2002 Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184 1140 1154

40. Southey-PilligCJ

DaviesDG

SauerK

2005 Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187 8114 8126

41. HeSY

NomuraK

WhittamTS

2004 Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694 181 206

42. ChristiePJ

VogelJP

2000 Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8 354 360

43. BurtnickMN

DeShazerD

NairV

GherardiniFC

BrettPJ

2010 Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 78 88 99

44. ChobchuenchomW

BhumiratanaA

2003 Isolation and characterization of pathogens attacking Pomacea canaliculata. World Journal of Microbiology and Biotechnology 19 903 906

45. ChobchuenchomW

MongkolsukS

BhumiratanaA

1996 Biodegradation of 3-chlorobenzoate by Pseudomonas putida 10.2. World Journal of Microbiology and Biotechnology 12 607 614

46. GjermansenM

NilssonM

YangL

Tolker-NielsenT

2009 Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol

47. Tolker-NielsenT

BrinchUC

RagasPC

AndersenJB

JacobsenCS

2000 Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182 6482 6489

48. HinsaSM

O'TooleGA

2006 Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Microbiology 152 1375 1383

49. CompantS

DuffyB

NowakJ

ClementC

BarkaEA

2005 Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71 4951 4959

50. GibbsKA

UrbanowskiML

GreenbergEP

2008 Genetic determinants of self identity and social recognition in bacteria. Science 321 256 259

51. BlangoMG

MulveyMA

2009 Bacterial landlines: contact-dependent signaling in bacterial populations. Curr Opin Microbiol 12 177 181

52. ChandlerJR

DuerkopBA

HinzA

WestTE

HermanJP

2009 Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J Bacteriol 191 5901 5909

53. HortonRM

HoSN

PullenJK

HuntHD

CaiZ

1993 Gene splicing by overlap extension. Methods Enzymol 217 270 279

54. ChoiKH

MimaT

CasartY

RhollD

KumarA

2008 Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol 74 1064 1075

55. ChoiKH

GaynorJB

WhiteKG

LopezC

BosioCM

2005 A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2 443 448

56. LambertsenL

SternbergC

MolinS

2004 Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6 726 732

57. AdachiO

KawaiT

TakedaK

MatsumotoM

TsutsuiH

1998 Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9 143 150

58. SternbergC

Tolker-NielsenT

2006 Growing and analyzing biofilms in flow cells. Curr Protoc Microbiol Chapter 1 Unit 1B 2

59. SterkP

KerseyPJ

ApweilerR

2006 Genome Reviews: standardizing content and representation of information about complete genomes. Omics 10 114 118

60. AltschulSF

MaddenTL

SchafferAA

ZhangJ

ZhangZ

1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

61. Marchler-BauerA

AndersonJB

ChitsazF

DerbyshireMK

DeWeese-ScottC

2009 CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37 D205 210

62. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

63. GascuelO

1997 BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14 685 695

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#