Direct Interaction between Two Viral Proteins, the Nonstructural Protein 2C and the Capsid Protein VP3, Is Required for Enterovirus Morphogenesis
In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2CATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel “reporter virus”, we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2CATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2CATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2CATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2CATPase is an essential component of the replication complex, and (iv) 2CATPase has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.
Vyšlo v časopise:
Direct Interaction between Two Viral Proteins, the Nonstructural Protein 2C and the Capsid Protein VP3, Is Required for Enterovirus Morphogenesis. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001066
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001066
Souhrn
In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2CATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel “reporter virus”, we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2CATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2CATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2CATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2CATPase is an essential component of the replication complex, and (iv) 2CATPase has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.
Zdroje
1. SemlerBL
WimmerE
2002 Molecular biology of picornaviruses. Washington D.C. ASM press 502
2. BartenschlagerR
Junker-NiepmannM
SchallerH
1990 The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation. J Virol 64 5324 5332
3. FrolovaE
FrolovI
SchlesingerS
1997 Packaging signals in alphaviruses. J Virol 71 248 258
4. GellerR
VignuzziM
AndinoR
FrydmanJ
2007 Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Gene Dev 21 195 205
5. Ypma-WongMF
DewaltPG
JohnsonVH
LambJG
SemlerBL
1988 Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166 265 270
6. HellenCUT
WimmerE
1995 Maturation of Poliovirus capsid proteins.
RotbartHA
Human enterovirus infections Washington, DC ASM Press 155 174
7. RacanielloVR
2007 Picornaviridae: The Viruses and Their Replication.
KnipeDM
Howley
PM
Fundamental virology New York Lippincott Williams & Wilkins 795 838
8. JacobsonMF
BaltimoreD
1968 Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein. J Mol Biol 33 369 378
9. NugentCI
KirkegaardK
1995 RNA binding properties of poliovirus subviral particles. J Virol 69 13 22
10. PfisterT
EggerD
BienzK
1995 Poliovirus subviral particles associated with progeny RNA in the replication complex. J Gen Virol 76 (Pt 1) 63 71
11. MollaA
PaulAV
WimmerE
1991 Cell-free, de novo synthesis of poliovirus. Science 254 1647 1651
12. NugentCI
JohnsonKL
SarnowP
KirkegaardK
1999 Functional coupling between replication and packaging of poliovirus replicon RNA. J Virol 73 427 435
13. JohnsonVH
SemlerBL
1988 Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs. Virology 162 47 57
14. BarclayW
LiQ
HutchinsonG
MoonD
RichardsonA
1998 Encapsidation studies of poliovirus subgenomic replicons. J Gen Virol 79 (Pt 7) 1725 1734
15. XiangW
HarrisKS
AlexanderL
WimmerE
1995 Interaction between the 5′-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J Virol 69 3658 3667
16. GromeierM
AlexanderL
WimmerE
1996 Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93 2370 2375
17. AlexanderL
LuHH
WimmerE
1994 Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A 91 1406 1410
18. WimmerE
HellenCU
CaoX
1993 Genetics of poliovirus. Annu Rev Genet 27 353 436
19. LuHH
WimmerE
1996 Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci U S A 93 1412 1417
20. RohllJB
MoonDH
EvansDJ
AlmondJW
1995 The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69 7835 7844
21. KajigayaS
ArakawaH
KugeS
KoiT
ImuraN
1985 Isolation and characterization of defective-interfering particles of poliovirus Sabin 1 strain. Virology 142 307 316
22. PorterDC
AnsardiDC
MorrowCD
1995 Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J Virol 69 1548 1555
23. PorterDC
AnsardiDC
WangJ
McPhersonS
MoldoveanuZ
1998 Demonstration of the specificity of poliovirus encapsidation using a novel replicon which encodes enzymatically active firefly luciferase. Virology 243 1 11
24. MuellerS
PapamichailD
ColemanJR
SkienaS
WimmerE
2006 Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80 9687 9696
25. ReuerQ
KuhnRJ
WimmerE
1990 Characterization of poliovirus clones containing lethal and nonlethal mutations in the genome-linked protein VPg. J Virol 64 2967 2975
26. CaoX
WimmerE
1996 Genetic variation of the poliovirus genome with two VPg coding units. Embo J 15 23 33
27. CheneyIW
NaimS
ShimJH
ReinhardtM
PaiB
2003 Viability of poliovirus/rhinovirus VPg chimeric viruses and identification of an amino acid residue in the VPg gene critical for viral RNA replication. J Virol 77 7434 7443
28. PaulAV
PetersJ
MugaveroJ
YinJ
van BoomJH
2003 Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77 891 904
29. SasakiJ
TaniguchiK
2003 The 5′-end sequence of the genome of Aichi virus, a picornavirus, contains an element critical for viral RNA encapsidation. J Virol 77 3542 3548
30. FrancoD
PathakHB
CameronCE
RombautB
WimmerE
2005 Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. Virol J 2 86
31. LiJP
BaltimoreD
1988 Isolation of poliovirus 2C mutants defective in viral RNA synthesis. J Virol 62 4016 4021
32. VanceLM
MoscufoN
ChowM
HeinzBA
1997 Poliovirus 2C region functions during encapsidation of viral RNA. J Virol 71 8759 8765
33. ChoMW
TeterinaN
EggerD
BienzK
EhrenfeldE
1994 Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202 129 145
34. EggerD
GosertR
BienzK
2002 Role of cellular structures in viral RNA replication.
SemlerBL
WimmerE
Molecular Biology of Picornaviruses Washington, D. C ASM Press 247 255
35. PaulAV
BelovGA
EhrenfeldE
WimmerE
2009 Model of picornavirus RNA replication.
CameronCE
GotteM
RaneyKD
Viral Genome Replication: springer 3 24
36. RodriguezPL
CarrascoL
1995 Poliovirus protein 2C contains two regions involved in RNA binding activity. J Biol Chem 270 10105 10112
37. LiJP
BaltimoreD
1990 An intragenic revertant of a poliovirus 2C mutant has an uncoating defect. J Virol 64 1102 1107
38. GorbalenyaAE
KooninEV
1993 Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3 419 429
39. MirzayanC
WimmerE
1994 Biochemical studies on poliovirus polypeptide 2C: evidence for ATPase activity. Virology 199 176 187
40. RodriguezPL
CarrascoL
1993 Poliovirus protein 2C has ATPase and GTPase activities. J Biol Chem 268 8105 8110
41. PfisterT
WimmerE
1999 Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem 274 6992 7001
42. AdamsP
KandiahE
EffantinG
StevenAC
EhrenfeldE
2009 Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J Biol Chem 284 22012 22021
43. PaulAV
MollaA
WimmerE
1994 Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology 199 188 199
44. TeterinaNL
GorbalenyaAE
EggerD
BienzK
EhrenfeldE
1997 Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 71 8962 8972
45. PfisterT
JonesKW
WimmerE
2000 A cysteine-rich motif in poliovirus protein 2C(ATPase) is involved in RNA replication and binds zinc in vitro. J Virol 74 334 343
46. BienzK
EggerD
PasamontesL
1987 Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160 220 226
47. PfisterT
PasamontesL
TroxlerM
EggerD
BienzK
1992 Immunocytochemical localization of capsid-related particles in subcellular fractions of poliovirus-infected cells. Virology 188 676 684
48. JiangP
FaaseJA
ToyodaH
PaulA
WimmerE
2007 Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci U S A 104 9457 9462
49. MendelsohnCL
WimmerE
RacanielloVR
1989 Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56 855 865
50. KoikeS
HorieH
IseI
OkitsuA
YoshidaM
1990 The poliovirus receptor protein is produced both as membrane-bound and secreted forms. Embo J 9 3217 3224
51. NewcombeNG
AnderssonP
JohanssonES
AuGG
LindbergAM
2003 Cellular receptor interactions of C-cluster human group A coxsackieviruses. J Gen Virol 84 3041 3050
52. HogleJM
ChowM
FilmanDJ
1985 Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229 1358 1365
53. XiaoC
Bator-KellyCM
RiederE
ChipmanPR
CraigA
2005 The crystal structure of coxsackievirus A21 and its interaction with ICAM-1. Structure 13 1019 1033
54. van der WerfS
BradleyJ
WimmerE
StudierFW
DunnJJ
1986 Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A 83 2330 2334
55. LiuY
FrancoD
PaulAV
WimmerE
2007 Tyrosine 3 of poliovirus terminal peptide VPg(3B) has an essential function in RNA replication in the context of its precursor protein, 3AB. J Virol 81 5669 5684
56. EminiEA
SchleifWA
ColonnoRJ
WimmerE
1985 Antigenic conservation and divergence between the viral-specific proteins of poliovirus type 1 and various picornaviruses. Virology 140 13 20
57. DewaltPG
LawsonMA
ColonnoRJ
SemlerBL
1989 Chimeric picornavirus polyproteins demonstrate a common 3C proteinase substrate specificity. J Virol 63 3444 3452
58. CornellCT
SemlerBL
2002 Subdomain specific functions of the RNA polymerase region of poliovirus 3CD polypeptide. Virology 298 200 213
59. BellYC
SemlerBL
EhrenfeldE
1999 Requirements for RNA replication of a poliovirus replicon by coxsackievirus B3 RNA polymerase. J Virol 73 9413 9421
60. TeterinaNL
GorbalenyaAE
EggerD
BienzK
RinaudoMS
2006 Testing the modularity of the N-terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology 344 453 467
61. LiX
LuHH
MuellerS
WimmerE
2001 The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 82 397 408
62. LuHH
LiX
CuconatiA
WimmerE
1995 Analysis of picornavirus 2A(pro) proteins: separation of proteinase from translation and replication functions. J Virol 69 7445 7452
63. FeuerR
MenaI
PagariganR
SlifkaMK
WhittonJL
2002 Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76 4430 4440
64. JiaXY
Van EdenM
BuschMG
EhrenfeldE
SummersDF
1998 trans-encapsidation of a poliovirus replicon by different picornavirus capsid proteins. J Virol 72 7972 7977
65. VegaE
PallanschMA
ObersteMS
Interspecies enterovirus recombination;2009 University of British Columbia Vancouver, BC, Canada
66. OhHS
PathakHB
GoodfellowIG
ArnoldJJ
CameronCE
2009 Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants. J Virol 83 9370 9387
67. VenterPA
KrishnaNK
SchneemannA
2005 Capsid protein synthesis from replicating RNA directs specific packaging of the genome of a multipartite, positive-strand RNA virus. J Virol 79 6239 6248
68. KhromykhAA
VarnavskiAN
SedlakPL
WestawayEG
2001 Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75 4633 4640
69. VolkovaE
GorchakovR
FrolovI
2006 The efficient packaging of Venezuelan equine encephalitis virus-specific RNAs into viral particles is determined by nsP1-3 synthesis. Virology 344 315 327
70. AnnamalaiP
RaoAL
2006 Packaging of brome mosaic virus subgenomic RNA is functionally coupled to replication-dependent transcription and translation of coat protein. J Virol 80 10096 10108
71. NovakJE
KirkegaardK
1994 Coupling between genome translation and replication in an RNA virus. Gene Dev 8 1726 1737
72. Hagino-YamagishiK
NomotoA
1989 In vitro construction of poliovirus defective interfering particles. J Virol 63 5386 5392
73. MurrayCL
JonesCT
TasselloJ
RiceCM
2007 Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J Virol 81 10220 10231
74. AppelN
ZayasM
MillerS
Krijnse-LockerJ
SchallerT
2008 Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 4 e1000035
75. KummererBM
RiceCM
2002 Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J Virol 76 4773 4784
76. KhromykhAA
VarnavskiAN
WestawayEG
1998 Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 72 5967 5977
77. AgapovEV
MurrayCL
FrolovI
QuL
MyersTM
2004 Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J Virol 78 2414 2425
78. LiuY
WimmerE
PaulAV
2009 Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789 495 517
79. BanerjeeR
TsaiW
KimW
DasguptaA
2001 Interaction of poliovirus-encoded 2C/2BC polypeptides with the 3′ terminus negative-strand cloverleaf requires an intact stem-loop b. Virology 280 41 51
80. BanerjeeR
EcheverriA
DasguptaA
1997 Poliovirus-encoded 2C polypeptide specifically binds to the 3′-terminal sequences of viral negative-strand RNA. J Virol 71 9570 9578
81. NovakJE
KirkegaardK
1991 Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J Virol 65 3384 3387
82. KimKS
TracyS
TapprichW
BaileyJ
LeeCK
2005 5′-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 79 7024 7041
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Contribution of Coagulases towards Disease and Protective Immunity
- Early Severe Inflammatory Responses to Uropathogenic Predispose to Chronic and Recurrent Urinary Tract Infection
- The Transcription Factor Rbf1 Is the Master Regulator for -Mating Type Controlled Pathogenic Development in
- Immune Modulation with Sulfasalazine Attenuates Immunopathogenesis but Enhances Macrophage-Mediated Fungal Clearance during Pneumonia