#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

“Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in after Two Decades of Laboratory and Field Analyses


Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes.


Vyšlo v časopise: “Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in after Two Decades of Laboratory and Field Analyses. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001004
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001004

Souhrn

Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∼20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes.


Zdroje

1. BañulsAL

HideM

PrugnolleF

2007 Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 64 1 109

2. MilgroomMG

1996 Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34 457 477

3. TaylorJW

GeiserDM

BurtA

KoufopanouV

1999 The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev 12 126 146

4. MacLeodA

TweedieA

WelburnSC

MaudlinI

TurnerCMR

TaitA

2000 Minisatellite marker analysis of Trypanosoma brucei: Reconciliation of clonal, panmictic, and epidemic population genetic structures. Proc Natl Acad Sci U S A 97 13442 13447

5. TibayrencM

AyalaFJ

2002 The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol 18 405 410

6. WHO

2002 Leishmaniasis. Available: http://who.int/zoonoses/diseases/leishmaniasis/en. Accessed 26 July 2010

7. TibayrencM

1993 Clonality in Leishmania. Parasitol Today 9 58

8. VictoirK

DujardinJC

2002 How to succeed in parasitic life without sex? Asking Leishmania. Trends Parasitol 18 81 85

9. TibayrencM

KjellbergF

AyalaFJ

1990 A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc Natl Acad Sci U S A 87 2414 2418

10. RavelC

CortesS

PratlongF

MorioF

DedetJP

CampinoL

2006 First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol 36 1383 1388

11. BañulsAL

GuerriniF

Le PontF

BarreraC

EspinelI

GuderianR

EcheverriaR

TibayrencM

1997 Evidence for hybridization by multilocus enzyme electrophoresis and random amplified polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guyanensis in Ecuador. J Eukaryot Microbiol 44 408 411

12. DujardinJC

BanulsAL

Llanos-CuentasA

AlvarezE

DeDonckerS

1995 Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Trop 59 293 307

13. NolderD

RoncalN

DaviesCR

Llanos-CuentasA

MilesMA

2007 Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous Leishmaniasis. Am J Trop Med Hyg 76 573 578

14. BastienP

BlaineauC

PagèsM

1992 Leishmania: sex, lies and karyotype. Parasitol Today 8 174 177

15. BlaineauC

BastienP

PagèsM

1992 Multiple forms of chromosome I, II and V in a restricted population of Leishmania infantum contrasting with monomorphism in individual strains suggest haploidy or automixy. Mol Biochem Parasitol 50 197 204

16. KuhlsK

KeilonatL

OchsenreitherS

SchaarM

SchweynochC

2007 Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect 9 334 343

17. RougeronV

MeeûsTD

HideM

WaleckxE

BermudezH

2009 Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci U S A 106 10224 10229

18. WahlundS

1928 Zusammensetzung von populationen und korrelationsers-chinungen von standpunkt der vererbungslehre aus betrachtet. Hereditas 11 65 108

19. De MeeûsT

BallouxF

2004 Clonal reproduction and linkage disequilibrium in diploids: a simulation study. Infect Genet Evol 4 345 351

20. PrugnolleF

De MeeûsT

2008 The impact of clonality on parasite population genetic structure. Parasite 15 455 457

21. PrugnolleF

De MeeûsT

2010 Apparent high recombination rates in clonal parasitic organisms due to inappropriate sampling design. Heredity 104 135 140

22. De MeeûsT

PrugnolleF

AgnewP

2007 Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64 1355 1372

23. Mark WelchDB

MeselsonM

2000 Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288 1211 1215

24. Mark WelchDB

MeselsonMS

2001 Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proc Natl Acad Sci U S A 98 6720 6724

25. PamiloP

1987 Heterozygosity in apomictic organisms. Hereditas 107 95 101

26. SuomalainenE

SauraA

LokkiJ

1976 Evolution of parthenogenetic insects. Evol Biol 9 209 257

27. JudsonOP

NormarkBB

1996 Ancient asexual scandals. Trends Ecol Evol 11 A41 A46

28. GibsonW

PeacockL

FerrisV

WilliamsK

BaileyM

2008 The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors 1 4

29. PeacockL

FerrisV

BaileyM

GibsonW

2009 Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei. Parasit Vectors 2 43

30. AkopyantsNS

KimblinN

SecundinoN

PatrickR

PetersN

LawyerP

DobsonDE

BeverleySM

SacksDL

2009 Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324 265 268

31. NadlerSA

1995 Microevolution and the Genetic-Structure of Parasite Populations. J Parasitol 81 395 403

32. De MeeûsT

McCoyKD

PrugnolleF

ChevillonC

DurandP

2007 Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect Genet Evol 7 308 332

33. VolfP

SadlovaJ

2009 Sex in Leishmania. Science 324 1644

34. KoffiM

SolanoP

BarnabéC

De MeeûsT

BuchetonB

2007 Genetic characterisation of Trypanosoma brucei ssp by microsatellite typing: new perspectives for the molecular epidemiology of human African trypanosomosis. Infect Genet Evol 7 675 684

35. GibsonW

1989 Analysis of genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Parasitol Int 99 391 402

36. GibsonW

1995 The significance of genetic exchange in trypanosomes. Parasitol Today 11 465 468

37. MacLeodA

TweedieA

McLellanS

HopeM

TaylorS

2005 Allelic segregation and independent assortment in T. brucei crosses: proof that the genetic system is Mendelian and involves meiosis. Mol Biochem Parasitol 144 131 131

38. MacLeodA

TweedieA

McLellanS

TaylorS

CooperA

2005 Allelic segregation and independent assortment in T. brucei crosses: Proof that the genetic system is Mendelian and involves meiosis. Mol Biochem Parasitol 143 12 19

39. MacLeodA

TweedieA

McLellanS

TaylorS

HallN

2005 The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Res 33 6688 6693

40. MacLeodA

TweedieA

McLellanS

TaylorS

HallN

2006 The genetic map and comparative analysis with the physical map of Trypanosoma brucei. Nucleic Acids Res 34 764 764

41. TaitA

MacLeodA

TweedieA

MasigaD

TurnerCMR

2007 Genetic exchange in Trypanosoma brucei: Evidence for mating prior to metacyclic stage development. Mol Biochem Parasitol 151 133 136

42. JenniL

MartiS

SchweizerJ

BetschartB

Le PageRW

1986 Hybrid formation between African trypanosomes during cyclical transmission. Nature 322 173 175

43. BarnabéC

BrisseS

TibayrencM

2000 Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology 120 513 526

44. MacedoAM

MachadoCR

OliveiraRP

PenaSD

2004 Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease. Mem Inst Oswaldo Cruz 99 1 12

45. MachadoCA

AyalaFJ

2001 Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A 98 7396 7401

46. GauntMW

YeoM

FrameIA

StothardJR

CarrascoHJ

2003 Mechanism of genetic exchange in American trypanosomes. Nature 421 936 939

47. LlewellynMS

MilesMA

CarrascoHJ

LewisMD

YeoM

2009 Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5 e1000410 doi:10.1371/journal.ppat.1000410

48. CruzAK

TitusR

BeverleySM

1993 Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci U S A 90 1599 1603

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#