#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Global Genotype-Phenotype Correlations in


Once the genome sequence of an organism is obtained, attention turns from identifying genes to understanding their function, their organization and control of metabolic pathways and networks that determine its physiology. Recent technical advances in acquiring genome-wide data have led to substantial progress in identifying gene functions. However, we still do not know the function of a large number of genes and, even when a gene product has been assigned to a functional class, we cannot normally predict its contribution to the phenotypic behaviour of the cell or organism - the phenome. In this study, we assessed bacterial growth parameters of 4030 non-redundant PA14 transposon mutants in the pathogenic bacterium Pseudomonas aeruginosa. The genome-wide simultaneous analysis of 119 distinct growth-related phenotypes uncovered a comprehensive phenome and provided evidence that most genotypes are not phenotypically isolated but rather define specific complex phenotypic clusters of genotypes. Since phenotypic overlap was demonstrated to reflect the relatedness of genotypes on a global scale, knowledge of an organism's phenome might significantly contribute to the advancement of functional genomics.


Vyšlo v časopise: Global Genotype-Phenotype Correlations in. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001074
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001074

Souhrn

Once the genome sequence of an organism is obtained, attention turns from identifying genes to understanding their function, their organization and control of metabolic pathways and networks that determine its physiology. Recent technical advances in acquiring genome-wide data have led to substantial progress in identifying gene functions. However, we still do not know the function of a large number of genes and, even when a gene product has been assigned to a functional class, we cannot normally predict its contribution to the phenotypic behaviour of the cell or organism - the phenome. In this study, we assessed bacterial growth parameters of 4030 non-redundant PA14 transposon mutants in the pathogenic bacterium Pseudomonas aeruginosa. The genome-wide simultaneous analysis of 119 distinct growth-related phenotypes uncovered a comprehensive phenome and provided evidence that most genotypes are not phenotypically isolated but rather define specific complex phenotypic clusters of genotypes. Since phenotypic overlap was demonstrated to reflect the relatedness of genotypes on a global scale, knowledge of an organism's phenome might significantly contribute to the advancement of functional genomics.


Zdroje

1. KellDB

2004 Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7 296 307

2. PriceND

ReedJL

PalssonBO

2004 Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2 886 897

3. OtiM

HuynenMA

BrunnerHG

2008 Phenome connections. Trends Genet 24 103 106

4. GohK

CusickME

ValleD

ChildsB

VidalM

2007 The human disease network. Proc Natl Acad Sci U S A 104 8685 8690

5. LageK

KarlbergEO

StørlingZM

OlasonPI

PedersenAG

2007 A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25 309 316

6. CarpenterAE

SabatiniDM

2004 Systematic genome-wide screens of gene function. Nat Rev Genet 5 11 22

7. BochnerBR

2003 New technologies to assess genotype-phenotype relationships. Nat Rev Genet 4 309 314

8. BochnerBR

2009 Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33 191 205

9. CovertMW

KnightEM

ReedJL

HerrgardMJ

PalssonBO

2004 Integrating high-throughput and computational data elucidates bacterial networks. Nature 429 92 96

10. GiaeverG

ChuAM

NiL

ConnellyC

RilesL

2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387 391

11. HillenmeyerME

FungE

WildenhainJ

PierceSE

HoonS

2008 The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320 362 365

12. BuchananRE

GibbonsNE

1974 Bergey's Manual of Determinative Bacteriology 8th edition Baltimore Williams and Wilkins 1246

13. StoverCK

PhamXQ

ErwinAL

MizoguchiSD

WarrenerP

2000 Complete genome sequence of Pseudomonas aeruginosa PA01 an opportunistic pathogen. Nature 406 959 964

14. JacobsMA

AlwoodA

ThaipisuttikulI

SpencerD

HaugenE

2003 Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100 14339 14344

15. LiberatiNT

UrbachJM

MiyataS

LeeDG

DrenkardE

2006 An ordered nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103 2833 2838

16. ClarkeR

RessomHW

WangA

XuanJ

LiuMC

2008 The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8 37 49

17. WangW

YangJ

2005 Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers Mining high-dimensional data Kluwer Academic Publishers

18. BeyerK

GoldsteinJ

RamakrishnanR

ShaftU

1999 When is “nearest neighbor” meaningful? Proceedings of 7th International Conference on Database Theory 1540 217 235

19. JaccardP

1901 Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37 547 579

20. MaoF

DamP

ChouJ

OlmanV

XuY

2009 DOOR: a database for prokaryotic operons. Nucleic Acids Res 37 D459 D463

21. WinsorGL

RossumTV

LoR

KhairaB

WhitesideMD

2009 Pseudomonas Genome Database: facilitating user-friendly comprehensive comparisons of microbial genomes. Nucleic Acids Res 37 D483 D488

22. MannHB

WhitneyDR

1947 On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18 50 60

23. LeeDG

UrbachJM

WuG

LiberatiNT

FeinbaumRL

2006 Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7 R90

24. DötschA

BeckerT

PommerenkeC

MagnowskaZ

JänschL

2009 Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomona aeruginosa. Antimicrob Agents Chemother 53 2522 2531

25. HoaglinDC

MostellerF

TukeyJW

2000 Understanding Robust and Exploratory Data Analysis New York Wiley

26. MüskenM

DifioreS

DötschA

FischerR

HäusslerS

2010 Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology 56 431 441

27. MerodRT

WarrenJE

McCaslinH

WuertzS

2007 Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. Appl Environ Microbiol 73 4922 4930

28. MuellerLN

de BrouwerJFC

AlmeidaJS

StalLJ

XavierJB

2006 Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecol 6 1

29. KamadaT

KawaiS

1989 An algorithm for drawing general undirected graphs. Information Processing Letters 31 7 15

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#