#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp


The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection.


Vyšlo v časopise: CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp. PLoS Pathog 6(8): e32767. doi:10.1371/journal.ppat.1001048
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001048

Souhrn

The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection.


Zdroje

1. KieffE

2007 Epstein-Barr Virus and its replication.;

FieldsBN

KnipeDM

HowleyPM

Philadelphia Wolters Kluwer Health/Lippincott Williams & Wilkins 2 v. (xix, 3091, 3086 p.) p

2. RickinsonAB

KieffE

2007 Epstein-Barr Virus.;

FieldsBN

KnipeDM

HowleyPM

Philadelphia Wolters Kluwer Health/Lippincott Williams & Wilkins 2 v. (xix, 3091, 3086 p.) p

3. YoungLS

RickinsonAB

2004 Epstein-Barr virus: 40 years on. Nat Rev Cancer 4 757 768

4. RoweM

RoweDT

GregoryCD

RickinsonAB

1987 Differences in B-cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6 2743 2751

5. BabcockGJ

HochbergD

Thorley-LawsonAD

2000 The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13 497 506

6. Thorley-LawsonDA

2001 Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1 75 82

7. MiyashitaEM

YangB

LamKM

CrawfordDH

Thorley-LawsonDA

1995 A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 80 593 601

8. ChenF

ZouJZ

di RenzoL

WinbergG

HuLF

1995 A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J Virol 69 3752 3758

9. QuL

RoweDT

1992 Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol 66 3715 3724

10. TierneyRJ

StevenN

YoungLS

RickinsonAB

1994 Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 68 7374 7385

11. FahraeusR

FuHL

ErnbergI

FinkeJ

RoweM

1988 Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42 329 338

12. ShibataD

WeissLM

1992 Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol 140 769 774

13. YoungLS

DawsonCW

ClarkD

RupaniH

BussonP

1988 Epstein-Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69 (Pt 5) 1051 1065

14. FarrellPJ

1995 Epstein-Barr virus immortalizing genes. Trends Microbiol 3 105 109

15. Thorley-LawsonDA

GrossA

2004 Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350 1328 1337

16. WoisetschlaegerM

StromingerJL

SpeckSH

1989 Mutually exclusive use of viral promoters in Epstein-Barr virus latently infected lymphocytes. Proc Natl Acad Sci U S A 86 6498 6502

17. WoisetschlaegerM

JinXW

YandavaCN

FurmanskiLA

StromingerJL

1991 Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci U S A 88 3942 3946

18. LinaIY

SpeckSH

2000 Regulation of EBNA gene expression. Epstein-Barr Virus Report 7 175 185

19. RoweM

LearAL

Croom-CarterD

DaviesAH

RickinsonAB

1992 Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J Virol 66 122 131

20. NonkweloC

SkinnerJ

BellA

RickinsonA

SampleJ

1996 Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol 70 623 627

21. TierneyR

KirbyH

NagraJ

RickinsonA

BellA

2000 The Epstein-Barr virus promoter initiating B-cell transformation is activated by RFX proteins and the B-cell-specific activator protein BSAP/Pax5. J Virol 74 10458 10467

22. YooL

SpeckSH

2000 Determining the role of the Epstein-Barr virus Cp EBNA2-dependent enhancer during the establishment of latency by using mutant and wild-type viruses recovered from cottontop marmoset lymphoblastoid cell lines. J Virol 74 11115 11120

23. LingPD

RawlinsDR

HaywardSD

1993 The Epstein-Barr virus immortalizing protein EBNA2 is targeted to DNA by a cellular enhancer binding protein. Proc Natl Acad Sci, USA 90 9237 9241

24. HenkelT

LingPD

HaywardSD

PetersonMG

1994 Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265 92 95

25. AbbotSD

RoweM

CadwalladerK

RickstenA

GordonJ

1990 Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J Virol 64 2126 2134

26. AmbinderRF

RobertsonKD

TaoQ

1999 DNA methylation and the Epstein-Barr virus. Semin Cancer Biol 9 369 375

27. FalkKI

SzekelyL

AlemanA

ErnbergI

1998 Specific methylation patterns in two control regions of Epstein-Barr virus latency: the LMP-1-coding upstream regulatory region and an origin of DNA replication (oriP). J Virol 72 2969 2974

28. RobertsonKD

MannsA

SwinnenLJ

ZongJC

GulleyML

1996 CpG methylation of the major Epstein-Barr virus latency promoter in Burkitt's lymphoma and Hodgkin's disease. Blood 88 3129 3136

29. RobertsonKD

HaywardSD

LingPD

SamidD

AmbinderRF

1995 Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol Cell Biol 15 6150 6159

30. JinXW

SpeckSH

1992 Identification of critical cis elements involved in mediating Epstein-Barr virus nuclear antigen 2-dependent activity of an enhancer located upstream of the viral BamHI C promoter. J Virol 66 2846 2852

31. WoisetschlaegerM

YandavaCN

FurmanskiLA

StromingerJL

SpeckSH

1990 Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc Natl Acad Sci U S A 87 1725 1729

32. AlldayMJ

KunduD

FinertyS

GriffinBE

1990 CpG methylation of viral DNA in EBV-associated tumours. Int J Cancer 45 1125 1130

33. ErnbergI

FalkK

MinarovitsJ

BussonP

TurszT

1989 The role of methylation in the phenotype-dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus. J Gen Virol 70 (Pt 11) 2989 3002

34. HummeS

ReisbachG

FeederleR

DelecluseHJ

BoussetK

2003 The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A 100 10989 10994

35. KennedyG

SugdenB

2003 EBNA-1, a Bifunctional Transcriptional Activator. Mol Cell Biol 23 6901 6908

36. WangJ

LindnerSE

LeightER

SugdenB

2006 Essential elements of a licensed, mammalian plasmid origin of DNA synthesis. Mol Cell Biol 26 1124 1134

37. LindnerSE

SugdenB

2007 The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 58 1 12

38. SchaeferBC

StromingerJL

SpeckSH

1995 Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci U S A 92 10565 10569

39. TsaiCN

LiuST

ChangYS

1995 Identification of a novel promoter located within the Bam HI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol 14 767 776

40. NonkweloC

RufIK

SampleJ

1997 The Epstein-Barr virus EBNA-1 promoter Qp requires an initiator-like element. J Virol 71 354 361

41. YoshiokaM

CrumMM

SampleJT

2008 Autorepression of Epstein-Barr virus nuclear antigen 1 expression by inhibition of pre-mRNA processing. J Virol 82 1679 1687

42. RufIK

MoghaddamA

WangF

SampleJ

1999 Mechanisms that regulate Epstein-Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol 73 1980 1989

43. MinarovitsJ

2006 Epigenotypes of latent herpesvirus genomes. Curr Top Microbiol Immunol 310 61 80

44. AlazardN

GruffatH

HiriartE

SergeantA

ManetE

2003 Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J Virol 77 8166 8172

45. AltmannM

PichD

RuissR

WangJ

SugdenB

2006 Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proc Natl Acad Sci U S A 103 14188 14193

46. ReismanD

SugdenB

1986 trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol 5 3838 3846

47. PuglielliMT

WoisetschlaegerM

SpeckSH

1996 oriP is essential for EBNA gene promoter activity in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol 70 5758 5768

48. BusheyAM

DormanER

CorcesVG

2008 Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell 32 1 9

49. WestAG

GasznerM

FelsenfeldG

2002 Insulators: many functions, many mechanisms. Genes Dev 16 271 288

50. WallaceJA

FelsenfeldG

2007 We gather together: insulators and genome organization. Curr Opin Genet Dev 17 400 407

51. CapelsonM

CorcesVG

2004 Boundary elements and nuclear organization. Biol Cell 96 617 629

52. PhillipsJE

CorcesVG

2009 CTCF: master weaver of the genome. Cell 137 1194 1211

53. OhlssonR

RenkawitzR

LobanenkovV

2001 CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17 520 527

54. DayL

ChauCM

NebozhynM

RennenkampAJ

ShoweM

2007 Chromatin Profiling Of Epstein-Barr Virus Latency Control Region. J Virol

55. ChauCM

ZhangXY

McMahonSB

LiebermanPM

2006 Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF. J Virol 80 5723 5732

56. CopelandNG

JenkinsNA

CourtDL

2001 Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2 769 779

57. PaulsonEJ

FingerothJD

YatesJL

SpeckSH

2002 Methylation of the EBV genome and establishment of restricted latency in low-passage EBV-infected 293 epithelial cells. Virology 299 109 121

58. TrivediP

SpinsantiP

CuomoL

VolpeM

TakadaK

2001 Differential regulation of Epstein-Barr virus (EBV) latent gene expression in Burkitt lymphoma cells infected with a recombinant EBV strain. J Virol 75 4929 4935

59. LiH

MinarovitsJ

2003 Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation. Adv Cancer Res 89 133 156

60. ChauCM

LiebermanPM

2004 Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus. J Virol 78 12308 12319

61. HarkAT

SchoenherrCJ

KatzDJ

IngramRS

LevorseJM

2000 CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405 486 489

62. KanduriC

PantV

LoukinovD

PugachevaE

QiCF

2000 Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10 853 856

63. BergerSL

2007 The complex language of chromatin regulation during transcription. Nature 447 407 412

64. ChernukhinI

ShamsuddinS

KangSY

BergstromR

KwonYW

2007 CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 27 1631 1648

65. DelecluseHJ

HilsendegenT

PichD

ZeidlerR

HammerschmidtW

1998 Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95 8245 8250

66. DengZ

LezinaL

ChenCJ

ShtivelbandS

SoW

2002 Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell 9 493 503

67. HirtB

1967 Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26 365 369

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#