Azole Drugs Are Imported By Facilitated Diffusion in and Other Pathogenic Fungi
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a Km of 0.64 uM and Vmax of 0.0056 pmol/min/108 cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Vyšlo v časopise:
Azole Drugs Are Imported By Facilitated Diffusion in and Other Pathogenic Fungi. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001126
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001126
Souhrn
Despite the wealth of knowledge regarding the mechanisms of action and the mechanisms of resistance to azole antifungals, very little is known about how the azoles are imported into pathogenic fungal cells. Here the in-vitro accumulation and import of Fluconazole (FLC) was examined in the pathogenic fungus, Candida albicans. In energized cells, FLC accumulation correlates inversely with expression of ATP-dependent efflux pumps. In de-energized cells, all strains accumulate FLC, suggesting that FLC import is not ATP-dependent. The kinetics of import in de-energized cells displays saturation kinetics with a Km of 0.64 uM and Vmax of 0.0056 pmol/min/108 cells, demonstrating that FLC import proceeds via facilitated diffusion through a transporter rather than passive diffusion. Other azoles inhibit FLC import on a mole/mole basis, suggesting that all azoles utilize the same facilitated diffusion mechanism. An analysis of related compounds indicates that competition for azole import depends on an aromatic ring and an imidazole or triazole ring together in one molecule. Import of FLC by facilitated diffusion is observed in other fungi, including Cryptococcus neoformans, Saccharomyces cerevisiae, and Candida krusei, indicating that the mechanism of transport is conserved among fungal species. FLC import was shown to vary among Candida albicans resistant clinical isolates, suggesting that altered facilitated diffusion may be a previously uncharacterized mechanism of resistance to azole drugs.
Zdroje
1. LaiCC
TanCK
HuangYT
ShaoPL
HsuehPR
2008 Current challenges in the management of invasive fungal infections. J Infect Chemother 14 77 85
2. PicazoJJ
Gonzalez-RomoF
CandelFJ
2008 Candidemia in the critically ill patient. Int J Antimicrob Agents 32 Suppl 2 S83 85
3. ClarkTA
HajjehRA
2002 Recent trends in the epidemiology of invasive mycoses. Curr Opin Infect Dis 15 569 574
4. TortoranoAM
KibblerC
PemanJ
BernhardtH
KlingsporL
2006 Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 27 359 366
5. GreenspanD
GreenspanJ
SchiodtM
PindborgJ
1990 AIDS and the mouth. Copenhagen Munksgaard 91 102
6. MorschhauserJ
2002 The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587 240 248
7. WhiteTC
MarrKA
BowdenRA
1998 Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews 11 382 402
8. SanglardD
WhiteTC
2005 Chapter 14 - Molecular Principles of Antifungal Drug Resistance.
HeitmanJ
FillerSG
EdwardsJE
MitchellAP
Molecular principles of fungal pathogenesis Washington, D.C. ASM Press 197 212
9. AlbertsonGD
NiimiM
CannonRD
JenkinsonHF
1996 Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrobial Agents & Chemotherapy 40 2835 2841
10. MaesakiS
MarichalP
Vanden BosscheH
SanglardD
KohnoS
1999 Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. Journal of Antimicrobial Chemotherapy 44 27 31
11. LambDC
KellyDE
ManningNJ
KellySL
1997 Reduced intracellular accumulation of azole antifungal results in resistance in Candida albicans isolate NCPF 3363. Fems Microbiology Letters 147 189 193
12. SanglardD
KuchlerK
IscherF
PaganiJL
MonodM
1995 Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrobial Agents and Chemotherapy 39 2378 2386
13. PrasadT
ChandraA
MukhopadhyayCK
PrasadR
2006 Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50 3597 3606
14. MukhopadhyayK
KohliA
PrasadR
2002 Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46 3695 3705
15. PasrijaR
KrishnamurthyS
PrasadT
ErnstJF
PrasadR
2005 Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. Journal Of Antimicrobial Chemotherapy 55 905 913
16. BoironP
DrouhetE
DupontB
ImprovisiL
1987 Entry of ketoconazole into Candida albicans. Antimicrob Agents Chemother 31 244 248
17. LyonsCN
WhiteTC
2000 Transcriptional analyses of antifungal drug resistance in Candida albicans. Antimicrobial Agents and Chemotherapy 44 2296 2303
18. WhiteTC
1997 Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrobial Agents And Chemotherapy 41 1482 1487
19. YamazakiT
SanglardD
SatoY
ArasazaM
1998 Fluconazole (FCZ) treatment for murine systemic candidiasis with Candida ablicans null mutants of nultidrug resistance genes. Intersci Conf Antimicrob Agents Chemother: ASM 112 (abstract no. C-149)
20. NoelT
FrancoisF
PaumardP
ChastinC
BrethesD
2003 Flucytosine-fluconazole cross-resistance in purine-cytosine permease-deficient Candida lusitaniae clinical isolates: indirect evidence of a fluconazole uptake transporter. Antimicrob Agents Chemother 47 1275 1284
21. BourotS
KarstF
1995 Isolation and characterization of the Saccharomyces cerevisiae SUT1 gene involved in sterol uptake. Gene 165 97 102
22. National Center for Biotechnology Information N, NIH 2010 PubChem Compound. 2010. http://pubchem.ncbi.nlm.nih.gov/
23. KrausJM
VerlindeCL
KarimiM
LepeshevaGI
GelbMH
2009 Rational modification of a candidate cancer drug for use against Chagas disease. J Med Chem 52 1639 1647
24. SuryadevaraPK
OlepuS
LockmanJW
OhkandaJ
KarimiM
2009 Structurally simple inhibitors of lanosterol 14alpha-demethylase are efficacious in a rodent model of acute Chagas disease. J Med Chem 52 3703 3715
25. LampingE
MonkBC
NiimiK
HolmesAR
TsaoS
2007 Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6 1150 1165
26. NiimiM
WadaS
TanabeK
KanekoA
TakanoY
2005 Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Jpn J Infect Dis 58 1 7
27. Invitrogen 2010 Invitrogen Clones. 2010. http://clones.invitrogen.com/bacpacsearch.php
28. RaiborgC
StenmarkH
2009 The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458 445 452
29. NickersonDP
RussellMR
OdorizziG
2007 A concentric circle model of multivesicular body cargo sorting. EMBO Rep 8 644 650
30. TuchBB
GalgoczyDJ
HerndayAD
LiH
JohnsonAD
2008 The evolution of combinatorial gene regulation in fungi. PLoS Biol 6 e38
31. RokasA
HittingerCT
2007 Transcriptional rewiring: the proof is in the eating. Current Biology 17 R626 628
32. MartchenkoM
LevitinA
HoguesH
NantelA
WhitewayM
2007 Transcriptional rewiring of fungal galactose-metabolism circuitry. Current Biology 17 1007 1013
33. IhmelsJ
BergmannS
Gerami-NejadM
YanaiI
McClellanM
2005 Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309 938 940
34. WhiteTC
HollemanS
DyF
MirelsLF
StevensDA
2002 Resistance mechanisms in clinical isolates of Candida albicans. Antimicrobial Agents and Chemotherapy 46 1704 1713
35. JorgensenP
EdgingtonNP
SchneiderBL
RupesI
TyersM
2007 The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18 3523 3532
36. NettJ
LincolnL
MarchilloK
MasseyR
HoloydaK
2007 Putative Role of {beta}-1,3 Glucans in Candida albicans Biofilm Resistance. Antimicrob Agents Chemother 51 510 520
37. Chapeland-LeclercF
BouchouxJ
GoumarA
ChastinC
VillardJ
2005 Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to Flucytosine and Fluconazole in Candida lusitaniae. Antimicrobial Agents and Chemotherapy 49 3101 3108
38. PaponN
NoelT
FlorentM
Gibot-LeclercS
JeanD
2007 Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrob Agents Chemother 51 369 371
39. MullerFM
StaudigelA
SalvenmoserS
TredupA
MiltenbergerR
2007 Cross-resistance to medical and agricultural azole drugs in yeasts from the oropharynx of human immunodeficiency virus patients and from environmental Bavarian vine grapes. Antimicrob Agents Chemother 51 3014 3016
40. EshelD
Ben-ArieR
DinoorA
PruskyD
2000 Resistance of Gibberellin-Treated Persimmon Fruit to Alternaria alternata Arises from the Reduced Ability of the Fungus to Produce Endo-1,4-beta-Glucanase. Phytopathology 90 1256 1262
41. NormanSM
BennettRD
PolingSM
MaierVP
NelsonMD
1986 Paclobutrazol Inhibits Abscisic Acid Biosynthesis in Cercospora rosicola. Plant Physiology 80 122 125
42. BayaM
SouloungangaP
GelhayeE
GerardinP
2001 Fungicidal activity of beta-thujaplicin analogues. Pest Manag Sci 57 833 838
43. RankinGO
YangDJ
Cressey-VenezianoK
WangRT
BrownPI
1985 In vivo and in vitro effects of azaconazole on renal function in the Fischer 344 rat. Toxicology 34 1 11
44. FonziWA
IrwinMY
1993 Isogenic strain construction and gene mapping in Candida albicans. Genetics 134 717 728
45. WhiteTC
PfallerMA
RinaldiRG
SmithJ
ReddingSW
1997 Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Diseases 3 S102 S109
46. HuaJ
MeyerJD
LodgeJK
2000 Development of positive selectable markers for the fungal pathogen Cryptococcus neoformans. Clin Diagn Lab Immunol 7 125 128
47. OliverBG
SilverPM
MarieC
HootSJ
LeydeSE
2008 Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology 154 960 970
48. MarieC
LeydeS
WhiteTC
2008 Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S. cerevisiae. Fungal Genet Biol 45 1430 1438
49. SongJL
HarryJB
EastmanRT
OliverBG
WhiteTC
2004 The Candida albicans lanosterol 14-alpha-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 48 1136 1144
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
- The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis
- Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Virulence
- Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes