The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Diarrhea
Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tmatt, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRβ−/−δ−/−, JH−/−, IgA−/−, pIgR−/−). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using ‘L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tmatt from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most “classical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission.
Vyšlo v časopise:
The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Diarrhea. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001097
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001097
Souhrn
Many enteropathogenic bacteria target the mammalian gut. The mechanisms protecting the host from infection are poorly understood. We have studied the protective functions of secretory antibodies (sIgA) and the microbiota, using a mouse model for S. typhimurium diarrhea. This pathogen is a common cause of diarrhea in humans world-wide. S. typhimurium (S. tmatt, sseD) causes a self-limiting gut infection in streptomycin-treated mice. After 40 days, all animals had overcome the disease, developed a sIgA response, and most had cleared the pathogen from the gut lumen. sIgA limited pathogen access to the mucosal surface and protected from gut inflammation in challenge infections. This protection was O-antigen specific, as demonstrated with pathogens lacking the S. typhimurium O-antigen (wbaP, S. enteritidis) and sIgA-deficient mice (TCRβ−/−δ−/−, JH−/−, IgA−/−, pIgR−/−). Surprisingly, sIgA-deficiency did not affect the kinetics of pathogen clearance from the gut lumen. Instead, this was mediated by the microbiota. This was confirmed using ‘L-mice’ which harbor a low complexity gut flora, lack colonization resistance and develop a normal sIgA response, but fail to clear S. tmatt from the gut lumen. In these mice, pathogen clearance was achieved by transferring a normal complex microbiota. Thus, besides colonization resistance ( = pathogen blockage by an intact microbiota), the microbiota mediates a second, novel protective function, i.e. pathogen clearance. Here, the normal microbiota re-grows from a state of depletion and disturbed composition and gradually clears even very high pathogen loads from the gut lumen, a site inaccessible to most “classical” immune effector mechanisms. In conclusion, sIgA and microbiota serve complementary protective functions. The microbiota confers colonization resistance and mediates pathogen clearance in primary infections, while sIgA protects from disease if the host re-encounters the same pathogen. This has implications for curing S. typhimurium diarrhea and for preventing transmission.
Zdroje
1. BackhedF
LeyRE
SonnenburgJL
PetersonDA
GordonJI
2005 Host-bacterial mutualism in the human intestine. Science 307 1915 1920
2. IvanovII
AtarashiK
ManelN
BrodieEL
ShimaT
2009 Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139 485 498
3. van der WaaijD
Berghuis-de VriesJM
LekkerkerkL-v
1971 Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69 405 411
4. VollaardEJ
ClasenerHA
1994 Colonization resistance. Antimicrob Agents Chemother 38 409 414
5. StecherB
HardtWD
2008 The role of microbiota in infectious disease. Trends Microbiol 16 107 114
6. BarthelM
HapfelmeierS
Quintanilla-MartinezL
KremerM
RohdeM
2003 Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 71 2839 2858
7. BarmanM
UnoldD
ShifleyK
AmirE
HungK
2008 Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 76 907 915
8. HohmannEL
2001 Nontyphoidal salmonellosis. Clin Infect Dis 32 263 269
9. DethlefsenL
HuseS
SoginML
RelmanDA
2008 The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol 6 e280
10. DoreK
BuxtonJ
HenryB
PollariF
MiddletonD
2004 Risk factors for Salmonella typhimurium DT104 and non-DT104 infection: a Canadian multi-provincial case-control study. Epidemiol Infect 132 485 493
11. BuchwaldDS
BlaserMJ
1984 A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev Infect Dis 6 345 356
12. BalfourAE
LewisR
AhmedS
1999 Convalescent excretion of Salmonella enteritidis in infants. J Infect 38 24 25
13. GreigJD
ToddEC
BartlesonCA
MichaelsBS
2007 Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 1. Description of the problem, methods, and agents involved. J Food Prot 70 1752 1761
14. BaderMW
SanowarS
DaleyME
SchneiderAR
ChoU
2005 Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122 461 472
15. GunnJS
LimKB
KruegerJ
KimK
GuoL
1998 PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27 1171 1182
16. BrownA
HormaecheCE
1989 The antibody response to salmonellae in mice and humans studied by immunoblots and ELISA. Microb Pathog 6 445 454
17. MittruckerHW
RaupachB
KohlerA
KaufmannSH
2000 Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol 164 1648 1652
18. UrenTK
WijburgOL
SimmonsC
JohansenFE
BrandtzaegP
2005 Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Eur J Immunol 35 180 188
19. MaaserC
HousleyMP
IimuraM
SmithJR
VallanceBA
2004 Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies. Infect Immun 72 3315 3324
20. StecherB
ChaffronS
KappeliR
HapfelmeierS
FreedrichS
2010 Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6 e1000711
21. StecherB
RobbianiR
WalkerAW
WestendorfAM
BarthelM
2007 Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biol 5 e244
22. HapfelmeierS
StecherB
BarthelM
KremerM
MüllerA
2005 The Salmonella Pathogenicity Island (SPI)-1 and SPI-2 Type III Secretion Systems Allow Salmonella Serovar Typhimurium to trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms. J Immunol 174 1675 1685
23. CoombesBK
CoburnBA
PotterAA
GomisS
MirakhurK
2005 Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect Immun 73 7161 7169
24. HapfelmeierS
HardtWD
2005 A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol
25. CurtissR3rd
KellySM
HassanJO
1993 Live oral avirulent Salmonella vaccines. Vet Microbiol 37 397 405
26. SimonsenJ
MolbakK
FalkenhorstG
KrogfeltKA
LinnebergA
2009 Estimation of incidences of infectious diseases based on antibody measurements. Stat Med 28 1882 1895
27. AngelakopoulosH
HohmannEL
2000 Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun 68 2135 2141
28. KangHY
SrinivasanJ
CurtissR3rd
2002 Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect Immun 70 1739 1749
29. BergmanMA
CummingsLA
BarrettSL
SmithKD
LaraJC
2005 CD4+ T cells and toll-like receptors recognize Salmonella antigens expressed in bacterial surface organelles. Infect Immun 73 1350 1356
30. SlackE
HapfelmeierS
StecherB
VelykoredkoY
StoelM
2009 Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325 617 620
31. MartinoliC
ChiavelliA
RescignoM
2007 Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27 975 984
32. WijburgOL
UrenTK
SimpfendorferK
JohansenFE
BrandtzaegP
2006 Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med 203 21 26
33. MacphersonAJ
GattoD
SainsburyE
HarrimanGR
HengartnerH
2000 A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288 2222 2226
34. BrandtzaegP
2009 Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol 70 505 515
35. SuarM
PeriaswamyB
SonghetP
MisselwitzB
MullerA
2009 Accelerated type III secretion system 2-dependent enteropathogenesis by a Salmonella enterica serovar enteritidis PT4/6 strain. Infect Immun 77 3569 3577
36. IlgK
EndtK
MisselwitzB
StecherB
AebiM
2009 O-antigen-negative Salmonella enterica serovar Typhimurium is attenuated in intestinal colonization but elicits colitis in streptomycin-treated mice. Infect Immun 77 2568 2575
37. TurnbaughPJ
HamadyM
YatsunenkoT
CantarelBL
DuncanA
2008 A core gut microbiome in obese and lean twins. Nature
38. DuerkopBA
VaishnavaS
HooperLV
2009 Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31 368 376
39. BohnhoffM
DrakeBL
MillerCP
1954 Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc exp Biol, NY 86 132 137
40. TurnbaughPJ
HamadyM
YatsunenkoT
CantarelBL
DuncanA
2009 A core gut microbiome in obese and lean twins. Nature 457 480 484
41. HuseSM
DethlefsenL
HuberJA
WelchDM
RelmanDA
2008 Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4 e1000255
42. Sarma-RupavtarmRB
GeZ
SchauerDB
FoxJG
PolzMF
2004 Spatial distribution and stability of the eight microbial species of the altered schaedler flora in the mouse gastrointestinal tract. Appl Environ Microbiol 70 2791 2800
43. LeyRE
HamadyM
LozuponeC
TurnbaughPJ
RameyRR
2008 Evolution of mammals and their gut microbes. Science 320 1647 1651
44. NardiRM
SilvaME
VieiraEC
BambirraEA
NicoliJR
1989 Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz J Med Biol Res 22 1389 1392
45. RawlsJ
2007 Enteric infection and inflammation alter gut microbial ecology. Cell host and microbe 2 73 74
46. Gaboriau-RouthiauV
RakotobeS
LecuyerE
MulderI
LanA
2009 The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31 677 689
47. MittruckerHW
KaufmannSH
2000 Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol 67 457 463
48. ChenJ
TrounstineM
AltFW
YoungF
KuraharaC
1993 Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5 647 656
49. HarrimanGR
BogueM
RogersP
FinegoldM
PachecoS
1999 Targeted deletion of the IgA constant region in mice leads to IgA deficiency with alterations in expression of other Ig isotypes. J Immunol 162 2521 2529
50. UrenTK
JohansenFE
WijburgOL
KoentgenF
BrandtzaegP
2003 Role of the polymeric Ig receptor in mucosal B cell homeostasis. J Immunol 170 2531 2539
51. MombaertsP
MizoguchiE
LjunggrenHG
IacominiJ
IshikawaH
1994 Peripheral lymphoid development and function in TCR mutant mice. Int Immunol 6 1061 1070
52. StecherB
BarthelM
SchlumbergerMC
HaberliL
RabschW
2008 Motility allows S. Typhimurium to benefit from the mucosal defence. Cell Microbiol 10 1166 1180
53. HapfelmeierS
MullerAJ
StecherB
KaiserP
BarthelM
2008 Microbe sampling by mucosal dendritic cells is a discrete, MyD88-independent step in DeltainvG S. Typhimurium colitis. J Exp Med 205 437 450
54. StecherB
HapfelmeierS
MullerC
KremerM
StallmachT
2004 Flagella and Chemotaxis Are Required for Efficient Induction of Salmonella enterica Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infect Immun 72 4138 4150
55. MuellerC
2002 Tumour necrosis factor in mouse models of chronic intestinal inflammation. Immunology 105 1 8
56. EilebrechtS
PellayFX
OdenwalderP
BrysbaertG
BeneckeBJ
2008 EBER2 RNA-induced transcriptome changes identify cellular processes likely targeted during Epstein Barr Virus infection. BMC Res Notes 1 100
57. NothS
BrysbaertG
BeneckeA
2006 Normalization using weighted negative second order exponential error functions (NeONORM) provides robustness against asymmetries in comparative transcriptome profiles and avoids false calls. Genomics Proteomics Bioinformatics 4 90 109
58. KuninV
EngelbrektsonA
OchmanH
HugenholtzP
2009 Wrinkles in the rare biosphere: pyrosequencing errors lead to artificial inflation of diversity estimates. Environ Microbiol
59. DeSantisTZ
HugenholtzP
LarsenN
RojasM
BrodieEL
2006 Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72 5069 5072
60. EddySR
2002 A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics 3 18
61. ColeJR
WangQ
CardenasE
FishJ
ChaiB
2009 The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37 D141 145
62. WangQ
GarrityGM
TiedjeJM
ColeJR
2007 Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73 5261 5267
63. SoginML
MorrisonHG
HuberJA
WelchDM
HuseSM
2006 Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103 12115 12120
64. QuinceC
LanzenA
CurtisTP
DavenportRJ
HallN
2009 Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6 639 641
65. KanagawaT
2003 Bias and artifacts in multitemplate polymerase chain reactions (PCR). J Biosci Bioeng 96 317 323
66. JohansenFE
PeknaM
NorderhaugIN
HanebergB
HietalaMA
1999 Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190 915 922
67. JensenLJ
KuhnM
StarkM
ChaffronS
CreeveyC
2009 STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37 D412 416
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
- The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis
- Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Virulence
- Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes