The HA and NS Genes of Human H5N1 Influenza A Virus Contribute to High Virulence in Ferrets
Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.
Vyšlo v časopise:
The HA and NS Genes of Human H5N1 Influenza A Virus Contribute to High Virulence in Ferrets. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001106
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001106
Souhrn
Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.
Zdroje
1. ClaasE
OsterhausA
van BeekR
De JongJ
RimmelzwaanG
1998
Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus.
Lancet
351
472
477
2. SubbaraoK
KlimovA
KatzJ
RegneryH
LimW
1998
Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness.
Science
279
393
396
3. BarnardD
2009
Animal models for the study of influenza pathogenesis and therapy.
Antiviral Res
82
A110
122
4. HattaM
GaoP
HalfmannP
KawaokaY
2001
Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses.
Science
293
1840
1842
5. GovorkovaE
RehgJ
KraussS
YenH
GuanY
2005
Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004.
J Virol
79
2191
2198
6. MainesT
LuX
ErbS
EdwardsL
GuarnerJ
2005
Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals.
J Virol
79
11788
11800
7. SalomonR
FranksJ
GovorkovaE
IlyushinaN
YenH
2006
The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04.
J Exp Med
203
689
697
8. LeQ
ItoM
MuramotoY
HoangP
VuongC
2010
Pathogenicity of highly pathogenic avian H5N1 influenza A viruses isolated from humans from 2003 to 2008 in Northern Vietnam.
J Gen Virol. In press
9. Hulse-PostD
FranksJ
BoydK
SalomonR
HoffmannE
2007
Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks.
J Virol
81
8515
8524
10. WatanabeT
WatanabeS
ShinyaK
KimJ
HattaM
2009
Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets.
Proc Natl Acad Sci U S A
106
588
592
11. AuewarakulP
SuptawiwatO
KongchanagulA
SangmaC
SuzukiY
2007
An avian influenza H5N1 virus that binds to a human-type receptor.
J Virol
81
9950
9955
12. YamadaS
SuzukiY
SuzukiT
LeM
NidomC
2006
Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors.
Nature
444
378
382
13. ItoT
SuzukiY
MitnaulL
VinesA
KidaH
1997
Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species.
Virology
227
493
499
14. SolórzanoA
WebbyR
LagerK
JankeB
García-SastreA
2005
Mutations in the NS1 protein of swine influenza virus impair anti-interferon activity and confer attenuation in pigs.
J Virol
79
7535
7543
15. ZhuQ
YangH
ChenW
CaoW
ZhongG
2008
A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens.
J Virol
82
220
228
16. ParkM
García-SastreA
CrosJ
BaslerC
PaleseP
2003
Newcastle disease virus V protein is a determinant of host range restriction.
J Virol
77
9522
9532
17. DonelanN
BaslerC
García-SastreA
2003
A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice.
J Virol
77
13257
13266
18. LiZ
JiangY
JiaoP
WangA
ZhaoF
2006
The NS1 gene contributes to the virulence of H5N1 avian influenza viruses.
J Virol
80
11115
11123
19. MurakamiS
HorimotoT
MailQ
NidomC
ChenH
2008
Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells.
J Virol
82
10502
10509
20. SteelJ
LowenA
PenaL
AngelM
SolórzanoA
2009
Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza.
J Virol
83
1742
1753
21. MurakamiS
IwasaA
Iwatsuki-HorimotoK
ItoM
KisoM
2008
Cross-clade protective immunity of H5N1 influenza vaccines in a mouse model.
Vaccine
26
6398
6404
22. WangW
RiedelK
LynchP
ChienC
MontelioneG
1999
RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids.
RNA
5
195
205
23. PichlmairA
SchulzO
TanC
NäslundT
LiljeströmP
2006
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates.
Science
314
997
1001
24. ChenH
BrightR
SubbaraoK
SmithC
CoxN
2007
Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice.
Virus Res
128
159
163
25. MunsterV
de WitE
van RielD
BeyerW
RimmelzwaanG
2007
The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses.
J Infect Dis
196
258
265
26. KobasaD
TakadaA
ShinyaK
HattaM
HalfmannP
2004
Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus.
Nature
431
703
707
27. YenH
AldridgeJ
BoonA
IlyushinaN
SalomonR
2009
Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread.
Proc Natl Acad Sci U S A
106
286
291
28. MackenC
LuH
GoodmanJ
BoykinL
2001
The value of a database in surveillance and vaccine selection.
CoxN
HampsonAW
Options for the Control of Influenza IV
Amsterdam
Elsevier Science
103
106
29. HaleB
RandallR
OrtínJ
JacksonD
2008
The multifunctional NS1 protein of influenza A viruses.
J Gen Virol
89
2359
2376
30. MinJ
KrugR
2006
The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway.
Proc Natl Acad Sci U S A
103
7100
7105
31. MinJ
LiS
SenG
KrugR
2007
A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis.
Virology
363
236
243
32. NeumannG
WatanabeT
ItoH
WatanabeS
GotoH
1999
Generation of influenza A viruses entirely from cloned cDNAs.
Proc Natl Acad Sci U S A
96
9345
9350
33. CastrucciM
KawaokaY
1993
Biologic importance of neuraminidase stalk length in influenza A virus.
J Virol
67
759
764
34. WagnerR
WolffT
HerwigA
PleschkaS
KlenkH
2000
Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics.
J Virol
74
6316
6323
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 9
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
- The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis
- Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Virulence
- Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes