Phylogenomics of Ligand-Gated Ion Channels Predicts Monepantel Effect
The recently launched veterinary anthelmintic drench for sheep (Novartis Animal Health Inc., Switzerland) containing the nematocide monepantel represents a new class of anthelmintics: the amino-acetonitrile derivatives (AADs), much needed in view of widespread resistance to the classical drugs. Recently, it was shown that the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus, are potential targets for AAD action. Both proteins belong to the DEG-3 subfamily of acetylcholine receptors, which are thought to be nematode-specific, and different from those targeted by the imidazothiazoles (e.g. levamisole). Here we provide further evidence that Cel-ACR-23 and Hco-MPTL-1-like subunits are involved in the monepantel-sensitive phenotype. We performed comparative genomics of ligand-gated ion channel genes from several nematodes and subsequently assessed their sensitivity to anthelmintics. The nematode species in the Caenorhabditis genus, equipped with ACR-23/MPTL-1-like receptor subunits, are sensitive to monepantel (EC50<1.25 µM), whereas the related nematodes Pristionchus pacificus and Strongyloides ratti, which lack an ACR-23/MPTL-1 homolog, are insensitive (EC50>43 µM). Genome sequence information has long been used to identify putative targets for therapeutic intervention. We show how comparative genomics can be applied to predict drug sensitivity when molecular targets of a compound are known or suspected.
Vyšlo v časopise:
Phylogenomics of Ligand-Gated Ion Channels Predicts Monepantel Effect. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001091
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001091
Souhrn
The recently launched veterinary anthelmintic drench for sheep (Novartis Animal Health Inc., Switzerland) containing the nematocide monepantel represents a new class of anthelmintics: the amino-acetonitrile derivatives (AADs), much needed in view of widespread resistance to the classical drugs. Recently, it was shown that the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus, are potential targets for AAD action. Both proteins belong to the DEG-3 subfamily of acetylcholine receptors, which are thought to be nematode-specific, and different from those targeted by the imidazothiazoles (e.g. levamisole). Here we provide further evidence that Cel-ACR-23 and Hco-MPTL-1-like subunits are involved in the monepantel-sensitive phenotype. We performed comparative genomics of ligand-gated ion channel genes from several nematodes and subsequently assessed their sensitivity to anthelmintics. The nematode species in the Caenorhabditis genus, equipped with ACR-23/MPTL-1-like receptor subunits, are sensitive to monepantel (EC50<1.25 µM), whereas the related nematodes Pristionchus pacificus and Strongyloides ratti, which lack an ACR-23/MPTL-1 homolog, are insensitive (EC50>43 µM). Genome sequence information has long been used to identify putative targets for therapeutic intervention. We show how comparative genomics can be applied to predict drug sensitivity when molecular targets of a compound are known or suspected.
Zdroje
1. PerryBD
RandolphTF
1999 Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Vet Parasitol 84 145 168
2. DrudgeJH
LelandSEJr
WyantZN
1957 Strain variation in the response of sheep nematodes to the action of phenothiazine. II. Studies on pure infections of Haemonchus contortus. Am J Vet Res 18 317 325
3. AtanasioA
BoomkerJ
SitoeC
2002 A survey on the occurrence of resistance to anthelmintics of gastrointestinal nematodes of goats in Mozambique. Onderstepoort J Vet Res 69 215 220
4. ColesGC
RhodesAC
WolstenholmeAJ
2005 Rapid selection for ivermectin resistance in Haemonchus contortus. Vet Parasitol 129 345 347
5. JacksonF
CoopRL
2000 The development of anthelmintic resistance in sheep nematodes. Parasitology 120 Suppl S95 107
6. TraversaD
PaolettiB
OtrantoD
MillerJ
2007 First report of multiple drug resistance in trichostrongyles affecting sheep under field conditions in Italy. Parasitol Res 101 1713 1716
7. WaghornTS
LeathwickDM
RhodesAP
LawrenceKE
JacksonR
2006 Prevalence of anthelmintic resistance on sheep farms in New Zealand. N Z Vet J 54 271 277
8. KaminskyR
DucrayP
JungM
CloverR
RufenerL
2008 A new class of anthelmintics effective against drug-resistant nematodes. Nature 452 176 180
9. KaminskyR
GauvryN
Schorderet WeberS
SkripskyT
BouvierJ
2008 Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate. Parasitol Res 103 931 939
10. RufenerL
MaserP
RoditiI
KaminskyR
2009 Haemonchus contortus acetylcholine receptors of the DEG-3 subfamily and their role in sensitivity to monepantel. PLoS Pathog 5 e1000380
11. MillarNS
GottiC
2009 Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56 237 246
12. KohlerP
2001 The biochemical basis of anthelmintic action and resistance. Int J Parasitol 31 336 345
13. RobertsonAP
ClarkCL
BurnsTA
ThompsonDP
GearyTG
2002 Paraherquamide and 2-deoxy-paraherquamide distinguish cholinergic receptor subtypes in Ascaris muscle. J Pharmacol Exp Ther 302 853 860
14. Holden-DyeL
WalkerRJ
2006 Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans. Int J Parasitol 36 395 402
15. ArenaJP
LiuKK
ParessPS
SchaefferJM
CullyDF
1992 Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Brain Res Mol Brain Res 15 339 348
16. CulettoE
BaylisHA
RichmondJE
JonesAK
FlemingJT
2004 The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279 42476 42483
17. FlemingJT
SquireMD
BarnesTM
TornoeC
MatsudaK
1997 Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17 5843 5857
18. BrownLA
JonesAK
BuckinghamSD
MeeCJ
SattelleDB
2006 Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int J Parasitol 36 617 624
19. WilliamsonSM
WalshTK
WolstenholmeAJ
2007 The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invert Neurosci 7 219 226
20. ChenN
HarrisTW
AntoshechkinI
BastianiC
BieriT
2005 WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Res 33 D383 389
21. The UniProt Consortium 2009 The Universal Protein Resource (UniProt). Nucleic Acids Res 37 D169 174
22. AltschulSF
GishW
MillerW
MyersEW
LipmanDJ
1990 Basic local alignment search tool. J Mol Biol 215 403 410
23. BirneyE
ClampM
DurbinR
2004 GeneWise and Genomewise. Genome Res 14 988 995
24. FinnRD
TateJ
MistryJ
CoggillPC
SammutSJ
2008 The Pfam protein families database. Nucleic Acids Res 36 D281 288
25. LarkinMA
BlackshieldsG
BrownNP
ChennaR
McGettiganPA
2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948
26. RiceP
LongdenI
BleasbyA
2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16 276 277
27. HusonDH
RichterDC
RauschC
DezulianT
FranzM
2007 Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8 460
28. BinghamJ
SudarsanamS
2000 Visualizing large hierarchical clusters in hyperbolic space. Bioinformatics 16 660 661
29. BlaxterML
De LeyP
GareyJR
LiuLX
ScheldemanP
1998 A molecular evolutionary framework for the phylum Nematoda. Nature 392 71 75
30. TasneemA
IyerLM
JakobssonE
AravindL
2005 Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6 R4
31. ChiuJ
DeSalleR
LamHM
MeiselL
CoruzziG
1999 Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16 826 838
32. PhilippeG
AngenotL
TitsM
FrederichM
2004 About the toxicity of some Strychnos species and their alkaloids. Toxicon 44 405 416
33. KallL
KroghA
SonnhammerEL
2004 A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338 1027 1036
34. KallL
KroghA
SonnhammerEL
2007 Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35 W429 432
35. JonesAK
SattelleDB
2004 Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26 39 49
36. WilliamsonSM
RobertsonAP
BrownL
WilliamsT
WoodsDJ
2009 The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 5 e1000517
37. RufenerL
BaurR
KaminskyR
MaserP
SigelE
2010 Monepantel allosterically activates DEG-3/DES-2 channels of the gastrointestinal nematode Haemonchus contortus. Molecular Pharmacology In Press
38. SagerH
HoskingB
BapstB
SteinP
VanhoffK
2009 Efficacy of the amino-acetonitrile derivative, monepantel, against experimental and natural adult stage gastro-intestinal nematode infections in sheep. Vet Parasitol 159 49 54
39. GhedinE
WangS
SpiroD
CalerE
ZhaoQ
2007 Draft genome of the filarial nematode parasite Brugia malayi. Science 317 1756 1760
40. OppermanCH
BirdDM
WilliamsonVM
RokhsarDS
BurkeM
2008 Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105 14802 14807
41. AbadP
GouzyJ
AuryJM
Castagnone-SerenoP
DanchinEG
2008 Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26 909 915
42. SteinLD
BaoZ
BlasiarD
BlumenthalT
BrentMR
2003 The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1 E45
43. C. elegans Seq Consortium 1998 Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282 2012 2018
44. DieterichC
CliftonSW
SchusterLN
ChinwallaA
DelehauntyK
2008 The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40 1193 1198
45. BerrimanM
HaasBJ
LoVerdePT
WilsonRA
DillonGP
2009 The genome of the blood fluke Schistosoma mansoni. Nature 460 352 358
46. AparicioS
ChapmanJ
StupkaE
PutnamN
ChiaJM
2002 Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297 1301 1310
47. Int. Chicken Genome Seq. Consortium 2004 Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432 695 716
48. SheX
JiangZ
ClarkRA
LiuG
ChengZ
2004 Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431 927 930
49. ElsikCG
TellamRL
WorleyKC
GibbsRA
MuznyDM
2009 The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324 522 528
50. Lindblad-TohK
WadeCM
MikkelsenTS
KarlssonEK
JaffeDB
2005 Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438 803 819
51. AdamsMD
CelnikerSE
HoltRA
EvansCA
GocayneJD
2000 The genome sequence of Drosophila melanogaster. Science 287 2185 2195
52. NeneV
WortmanJR
LawsonD
HaasB
KodiraC
2007 Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316 1718 1723
53. HoltRA
SubramanianGM
HalpernA
SuttonGG
CharlabR
2002 The genome sequence of the malaria mosquito Anopheles gambiae. Science 298 129 149
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 9
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
- The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis
- Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Virulence
- Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes