Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.
Vyšlo v časopise:
Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001107
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001107
Souhrn
Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.
Zdroje
1. BieniaszPD
2009
The cell biology of HIV-1 virion genesis.
Cell Host Microbe
5
550
558
2. FujiiK
HurleyJH
FreedEO
2007
Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1.
Nat Rev Microbiol
5
912
916
3. McDonaldB
Martin-SerranoJ
2009
No strings attached: the ESCRT machinery in viral budding and cytokinesis.
J Cell Sci
122
2167
2177
4. PinceticA
LeisJ
2009
The Mechanism of Budding of Retroviruses From Cell Membranes.
Adv Virol
2009
6239691
6239699
5. MoritaE
SundquistWI
2004
Retrovirus budding.
Annu Rev Cell Dev Biol
20
395
425
6. RaiborgC
StenmarkH
2009
The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Nature
458
445
452
7. SaksenaS
SunJ
ChuT
EmrSD
2007
ESCRTing proteins in the endocytic pathway.
Trends Biochem Sci
32
561
573
8. HurleyJH
2008
ESCRT complexes and the biogenesis of multivesicular bodies.
Curr Opin Cell Biol
20
4
11
9. HansonPI
ShimS
MerrillSA
2009
Cell biology of the ESCRT machinery.
Curr Opin Cell Biol
21
568
574
10. CarltonJG
Martin-SerranoJ
2007
Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.
Science
316
1908
1912
11. MoritaE
SandrinV
ChungHY
MorhamSG
GygiSP
2007
Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.
Embo J
26
4215
4227
12. HurleyJH
RenX
2009
The circuitry of cargo flux in the ESCRT pathway.
J Cell Biol
185
185
187
13. BieniaszPD
2006
Late budding domains and host proteins in enveloped virus release.
Virology
344
55
63
14. DemirovDG
FreedEO
2004
Retrovirus budding.
Virus Res
106
87
102
15. GottlingerHG
DorfmanT
SodroskiJG
HaseltineWA
1991
Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release.
Proc Natl Acad Sci U S A
88
3195
3199
16. HuangM
OrensteinJM
MartinMA
FreedEO
1995
p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease.
J Virol
69
6810
6818
17. DemirovDG
OnoA
OrensteinJM
FreedEO
2002
Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function.
Proc Natl Acad Sci U S A
99
955
960
18. GarrusJE
von SchwedlerUK
PornillosOW
MorhamSG
ZavitzKH
2001
Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.
Cell
107
55
65
19. Martin-SerranoJ
ZangT
BieniaszPD
2001
HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress.
Nat Med
7
1313
1319
20. VerPlankL
BouamrF
LaGrassaTJ
AgrestaB
KikonyogoA
2001
Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag).
Proc Natl Acad Sci U S A
98
7724
7729
21. FisherRD
ChungHY
ZhaiQ
RobinsonH
SundquistWI
2007
Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding.
Cell
128
841
852
22. Martin-SerranoJ
YarovoyA
Perez-CaballeroD
BieniaszPD
2003
Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins.
Proc Natl Acad Sci U S A
100
12414
12419
23. StrackB
CalistriA
CraigS
PopovaE
GottlingerHG
2003
AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding.
Cell
114
689
699
24. von SchwedlerUK
StuchellM
MullerB
WardDM
ChungHY
2003
The protein network of HIV budding.
Cell
114
701
713
25. ZhaiQ
FisherRD
ChungHY
MyszkaDG
SundquistWI
2008
Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV.
Nat Struct Mol Biol
15
43
49
26. TanziGO
PieferAJ
BatesP
2003
Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release.
J Virol
77
8440
8447
27. MuziolT
Pineda-MolinaE
RavelliRB
ZamborliniA
UsamiY
2006
Structural basis for budding by the ESCRT-III factor CHMP3.
Dev Cell
10
821
830
28. ZamborliniA
UsamiY
RadoshitzkySR
PopovaE
PaluG
2006
Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding.
Proc Natl Acad Sci U S A
103
19140
19145
29. UsamiY
PopovS
GottlingerHG
2007
Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site.
J Virol
81
6614
6622
30. PopovS
PopovaE
InoueM
GottlingerHG
2008
Human Immunodeficiency Virus Type 1 Gag Engages the Bro1 Domain of ALIX/AIP1 through the Nucleocapsid.
J Virol
82
1389
1398
31. PopovS
PopovaE
InoueM
GottlingerHG
2009
Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production.
J Virol
83
7185
7193
32. DussuptV
JavidMP
Abou-JaoudeG
JadwinJA
de La CruzJ
2009
The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding.
PLoS Pathog
5
e1000339
33. PiresR
HartliebB
SignorL
SchoehnG
LataS
2009
A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments.
Structure
17
843
856
34. KatohK
ShibataH
HattaK
MakiM
2004
CHMP4b is a major binding partner of the ALG-2-interacting protein Alix among the three CHMP4 isoforms.
Arch Biochem Biophys
421
159
165
35. WollertT
HurleyJH
2010
Molecular mechanism of multivesicular body biogenesis by ESCRT complexes.
Nature
464
864
869
36. UsamiY
PopovS
PopovaE
GottlingerHG
2008
Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase.
J Virol
82
4898
4907
37. ChungHY
MoritaE
von SchwedlerU
MullerB
KrausslichHG
2008
NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains.
J Virol
82
4884
4897
38. BernassolaF
KarinM
CiechanoverA
MelinoG
2008
The HECT family of E3 ubiquitin ligases: multiple players in cancer development.
Cancer Cell
14
10
21
39. ItaniOA
CampbellJR
HerreroJ
SnyderPM
ThomasCP
2003
Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains.
Am J Physiol Renal Physiol
285
F916
929
40. FrankeEK
YuanHE
LubanJ
1994
Specific incorporation of cyclophilin A into HIV-1 virions.
Nature
372
359
362
41. ThaliM
BukovskyA
KondoE
RosenwirthB
WalshCT
1994
Functional association of cyclophilin A with HIV-1 virions.
Nature
372
363
365
42. WiesnerS
OgunjimiAA
WangHR
RotinD
SicheriF
2007
Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain.
Cell
130
651
662
43. JadwinJA
RuddV
SetteP
ChallaS
BouamrF
2010
Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch.
J Virol
84
704
715
44. AccolaMA
StrackB
GottlingerHG
2000
Efficient particle production by minimal gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain.
J Virol
74
5395
5402
45. PopovaE
PopovS
GöttlingerH
2010
Human immunodeficiency virus type 1 nucleocapsid-p1 confers ESCRT pathway dependence.
J Virol
84
6590
6597
46. MarinI
2010
Animal HECT ubiquitin ligases: evolution and functional implications.
BMC Evol Biol
10
56
47. DasturA
BeaudenonS
KelleyM
KrugRM
HuibregtseJM
2006
Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells.
J Biol Chem
281
4334
4338
48. VersteegGA
HaleBG
van BoheemenS
WolffT
LenschowDJ
2010
Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein.
J Virol
84
5423
5430
49. KimHC
HuibregtseJM
2009
Polyubiquitination by HECT E3s and the determinants of chain type specificity.
Mol Cell Biol
29
3307
3318
50. NewtonK
MatsumotoML
WertzIE
KirkpatrickDS
LillJR
2008
Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.
Cell
134
668
678
51. WangH
MatsuzawaA
BrownSA
ZhouJ
GuyCS
2008
Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin.
Proc Natl Acad Sci U S A
105
20197
20202
52. WangG
YangJ
HuibregtseJM
1999
Functional domains of the Rsp5 ubiquitin-protein ligase.
Mol Cell Biol
19
342
352
53. ZhadinaM
McClureMO
JohnsonMC
BieniaszPD
2007
Ubiquitin-dependent virus particle budding without viral protein ubiquitination.
Proc Natl Acad Sci U S A
104
20031
20036
54. Martin-SerranoJ
EastmanSW
ChungW
BieniaszPD
2005
HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway.
J Cell Biol
168
89
101
55. NikkoE
AndreB
2007
Split-ubiquitin two-hybrid assay to analyze protein-protein interactions at the endosome: application to Saccharomyces cerevisiae Bro1 interacting with ESCRT complexes, the Doa4 ubiquitin hydrolase, and the Rsp5 ubiquitin ligase.
Eukaryot Cell
6
1266
1277
56. LauwersE
ErpapazoglouZ
Haguenauer-TsapisR
AndreB
2010
The ubiquitin code of yeast permease trafficking.
Trends Cell Biol
20
196
204
57. JoshiA
MunshiU
AblanSD
NagashimaK
FreedEO
2008
Functional replacement of a retroviral late domain by ubiquitin fusion.
Traffic
9
1972
1983
58. StrackB
CalistriA
GottlingerHG
2002
Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis.
J Virol
76
5472
5479
59. KimHT
KimKP
LlediasF
KisselevAF
ScaglioneKM
2007
Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages.
J Biol Chem
282
17375
17386
60. ScialpiF
MalatestaM
PeschiaroliA
RossiM
MelinoG
2008
Itch self-polyubiquitylation occurs through lysine-63 linkages.
Biochem Pharmacol
76
1515
1521
61. KeeY
LyonN
HuibregtseJM
2005
The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme.
Embo J
24
2414
2424
62. VaradanR
AssfalgM
HaririniaA
RaasiS
PickartC
2004
Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling.
J Biol Chem
279
7055
7063
63. TennoT
FujiwaraK
TochioH
IwaiK
MoritaEH
2004
Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains.
Genes Cells
9
865
875
64. VaradanR
WalkerO
PickartC
FushmanD
2002
Structural properties of polyubiquitin chains in solution.
J Mol Biol
324
637
647
65. LauwersE
JacobC
AndreB
2009
K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway.
J Cell Biol
185
493
502
66. ChenBJ
LambRA
2008
Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?
Virology
372
221
232
67. HortonRM
HuntHD
HoSN
PullenJK
PeaseLR
1989
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Gene
77
61
68
68. DorfmanT
WeimannA
BorsettiA
WalshCT
GottlingerHG
1997
Active-site residues of cyclophilin A are crucial for its incorporation into human immunodeficiency virus type 1 virions.
J Virol
71
7110
7113
69. StrackB
CalistriA
AccolaMA
PaluG
GottlingerHG
2000
A role for ubiquitin ligase recruitment in retrovirus release.
Proc Natl Acad Sci U S A
97
13063
13068
70. VerdeciaMA
JoazeiroCA
WellsNJ
FerrerJL
BowmanME
2003
Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.
Mol Cell
11
249
259
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 9
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
- The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly during Clathrin-Dependent Endocytosis
- Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Virulence
- Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes