#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag


Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.


Vyšlo v časopise: Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag. PLoS Pathog 6(9): e32767. doi:10.1371/journal.ppat.1001107
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001107

Souhrn

Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.


Zdroje

1. BieniaszPD

2009

The cell biology of HIV-1 virion genesis.

Cell Host Microbe

5

550

558

2. FujiiK

HurleyJH

FreedEO

2007

Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1.

Nat Rev Microbiol

5

912

916

3. McDonaldB

Martin-SerranoJ

2009

No strings attached: the ESCRT machinery in viral budding and cytokinesis.

J Cell Sci

122

2167

2177

4. PinceticA

LeisJ

2009

The Mechanism of Budding of Retroviruses From Cell Membranes.

Adv Virol

2009

6239691

6239699

5. MoritaE

SundquistWI

2004

Retrovirus budding.

Annu Rev Cell Dev Biol

20

395

425

6. RaiborgC

StenmarkH

2009

The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.

Nature

458

445

452

7. SaksenaS

SunJ

ChuT

EmrSD

2007

ESCRTing proteins in the endocytic pathway.

Trends Biochem Sci

32

561

573

8. HurleyJH

2008

ESCRT complexes and the biogenesis of multivesicular bodies.

Curr Opin Cell Biol

20

4

11

9. HansonPI

ShimS

MerrillSA

2009

Cell biology of the ESCRT machinery.

Curr Opin Cell Biol

21

568

574

10. CarltonJG

Martin-SerranoJ

2007

Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery.

Science

316

1908

1912

11. MoritaE

SandrinV

ChungHY

MorhamSG

GygiSP

2007

Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis.

Embo J

26

4215

4227

12. HurleyJH

RenX

2009

The circuitry of cargo flux in the ESCRT pathway.

J Cell Biol

185

185

187

13. BieniaszPD

2006

Late budding domains and host proteins in enveloped virus release.

Virology

344

55

63

14. DemirovDG

FreedEO

2004

Retrovirus budding.

Virus Res

106

87

102

15. GottlingerHG

DorfmanT

SodroskiJG

HaseltineWA

1991

Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release.

Proc Natl Acad Sci U S A

88

3195

3199

16. HuangM

OrensteinJM

MartinMA

FreedEO

1995

p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease.

J Virol

69

6810

6818

17. DemirovDG

OnoA

OrensteinJM

FreedEO

2002

Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function.

Proc Natl Acad Sci U S A

99

955

960

18. GarrusJE

von SchwedlerUK

PornillosOW

MorhamSG

ZavitzKH

2001

Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.

Cell

107

55

65

19. Martin-SerranoJ

ZangT

BieniaszPD

2001

HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress.

Nat Med

7

1313

1319

20. VerPlankL

BouamrF

LaGrassaTJ

AgrestaB

KikonyogoA

2001

Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag).

Proc Natl Acad Sci U S A

98

7724

7729

21. FisherRD

ChungHY

ZhaiQ

RobinsonH

SundquistWI

2007

Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding.

Cell

128

841

852

22. Martin-SerranoJ

YarovoyA

Perez-CaballeroD

BieniaszPD

2003

Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins.

Proc Natl Acad Sci U S A

100

12414

12419

23. StrackB

CalistriA

CraigS

PopovaE

GottlingerHG

2003

AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding.

Cell

114

689

699

24. von SchwedlerUK

StuchellM

MullerB

WardDM

ChungHY

2003

The protein network of HIV budding.

Cell

114

701

713

25. ZhaiQ

FisherRD

ChungHY

MyszkaDG

SundquistWI

2008

Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV.

Nat Struct Mol Biol

15

43

49

26. TanziGO

PieferAJ

BatesP

2003

Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release.

J Virol

77

8440

8447

27. MuziolT

Pineda-MolinaE

RavelliRB

ZamborliniA

UsamiY

2006

Structural basis for budding by the ESCRT-III factor CHMP3.

Dev Cell

10

821

830

28. ZamborliniA

UsamiY

RadoshitzkySR

PopovaE

PaluG

2006

Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding.

Proc Natl Acad Sci U S A

103

19140

19145

29. UsamiY

PopovS

GottlingerHG

2007

Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site.

J Virol

81

6614

6622

30. PopovS

PopovaE

InoueM

GottlingerHG

2008

Human Immunodeficiency Virus Type 1 Gag Engages the Bro1 Domain of ALIX/AIP1 through the Nucleocapsid.

J Virol

82

1389

1398

31. PopovS

PopovaE

InoueM

GottlingerHG

2009

Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production.

J Virol

83

7185

7193

32. DussuptV

JavidMP

Abou-JaoudeG

JadwinJA

de La CruzJ

2009

The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding.

PLoS Pathog

5

e1000339

33. PiresR

HartliebB

SignorL

SchoehnG

LataS

2009

A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments.

Structure

17

843

856

34. KatohK

ShibataH

HattaK

MakiM

2004

CHMP4b is a major binding partner of the ALG-2-interacting protein Alix among the three CHMP4 isoforms.

Arch Biochem Biophys

421

159

165

35. WollertT

HurleyJH

2010

Molecular mechanism of multivesicular body biogenesis by ESCRT complexes.

Nature

464

864

869

36. UsamiY

PopovS

PopovaE

GottlingerHG

2008

Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase.

J Virol

82

4898

4907

37. ChungHY

MoritaE

von SchwedlerU

MullerB

KrausslichHG

2008

NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains.

J Virol

82

4884

4897

38. BernassolaF

KarinM

CiechanoverA

MelinoG

2008

The HECT family of E3 ubiquitin ligases: multiple players in cancer development.

Cancer Cell

14

10

21

39. ItaniOA

CampbellJR

HerreroJ

SnyderPM

ThomasCP

2003

Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains.

Am J Physiol Renal Physiol

285

F916

929

40. FrankeEK

YuanHE

LubanJ

1994

Specific incorporation of cyclophilin A into HIV-1 virions.

Nature

372

359

362

41. ThaliM

BukovskyA

KondoE

RosenwirthB

WalshCT

1994

Functional association of cyclophilin A with HIV-1 virions.

Nature

372

363

365

42. WiesnerS

OgunjimiAA

WangHR

RotinD

SicheriF

2007

Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain.

Cell

130

651

662

43. JadwinJA

RuddV

SetteP

ChallaS

BouamrF

2010

Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch.

J Virol

84

704

715

44. AccolaMA

StrackB

GottlingerHG

2000

Efficient particle production by minimal gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain.

J Virol

74

5395

5402

45. PopovaE

PopovS

GöttlingerH

2010

Human immunodeficiency virus type 1 nucleocapsid-p1 confers ESCRT pathway dependence.

J Virol

84

6590

6597

46. MarinI

2010

Animal HECT ubiquitin ligases: evolution and functional implications.

BMC Evol Biol

10

56

47. DasturA

BeaudenonS

KelleyM

KrugRM

HuibregtseJM

2006

Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells.

J Biol Chem

281

4334

4338

48. VersteegGA

HaleBG

van BoheemenS

WolffT

LenschowDJ

2010

Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein.

J Virol

84

5423

5430

49. KimHC

HuibregtseJM

2009

Polyubiquitination by HECT E3s and the determinants of chain type specificity.

Mol Cell Biol

29

3307

3318

50. NewtonK

MatsumotoML

WertzIE

KirkpatrickDS

LillJR

2008

Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.

Cell

134

668

678

51. WangH

MatsuzawaA

BrownSA

ZhouJ

GuyCS

2008

Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin.

Proc Natl Acad Sci U S A

105

20197

20202

52. WangG

YangJ

HuibregtseJM

1999

Functional domains of the Rsp5 ubiquitin-protein ligase.

Mol Cell Biol

19

342

352

53. ZhadinaM

McClureMO

JohnsonMC

BieniaszPD

2007

Ubiquitin-dependent virus particle budding without viral protein ubiquitination.

Proc Natl Acad Sci U S A

104

20031

20036

54. Martin-SerranoJ

EastmanSW

ChungW

BieniaszPD

2005

HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway.

J Cell Biol

168

89

101

55. NikkoE

AndreB

2007

Split-ubiquitin two-hybrid assay to analyze protein-protein interactions at the endosome: application to Saccharomyces cerevisiae Bro1 interacting with ESCRT complexes, the Doa4 ubiquitin hydrolase, and the Rsp5 ubiquitin ligase.

Eukaryot Cell

6

1266

1277

56. LauwersE

ErpapazoglouZ

Haguenauer-TsapisR

AndreB

2010

The ubiquitin code of yeast permease trafficking.

Trends Cell Biol

20

196

204

57. JoshiA

MunshiU

AblanSD

NagashimaK

FreedEO

2008

Functional replacement of a retroviral late domain by ubiquitin fusion.

Traffic

9

1972

1983

58. StrackB

CalistriA

GottlingerHG

2002

Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis.

J Virol

76

5472

5479

59. KimHT

KimKP

LlediasF

KisselevAF

ScaglioneKM

2007

Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages.

J Biol Chem

282

17375

17386

60. ScialpiF

MalatestaM

PeschiaroliA

RossiM

MelinoG

2008

Itch self-polyubiquitylation occurs through lysine-63 linkages.

Biochem Pharmacol

76

1515

1521

61. KeeY

LyonN

HuibregtseJM

2005

The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme.

Embo J

24

2414

2424

62. VaradanR

AssfalgM

HaririniaA

RaasiS

PickartC

2004

Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling.

J Biol Chem

279

7055

7063

63. TennoT

FujiwaraK

TochioH

IwaiK

MoritaEH

2004

Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains.

Genes Cells

9

865

875

64. VaradanR

WalkerO

PickartC

FushmanD

2002

Structural properties of polyubiquitin chains in solution.

J Mol Biol

324

637

647

65. LauwersE

JacobC

AndreB

2009

K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway.

J Cell Biol

185

493

502

66. ChenBJ

LambRA

2008

Mechanisms for enveloped virus budding: can some viruses do without an ESCRT?

Virology

372

221

232

67. HortonRM

HuntHD

HoSN

PullenJK

PeaseLR

1989

Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.

Gene

77

61

68

68. DorfmanT

WeimannA

BorsettiA

WalshCT

GottlingerHG

1997

Active-site residues of cyclophilin A are crucial for its incorporation into human immunodeficiency virus type 1 virions.

J Virol

71

7110

7113

69. StrackB

CalistriA

AccolaMA

PaluG

GottlingerHG

2000

A role for ubiquitin ligase recruitment in retrovirus release.

Proc Natl Acad Sci U S A

97

13063

13068

70. VerdeciaMA

JoazeiroCA

WellsNJ

FerrerJL

BowmanME

2003

Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase.

Mol Cell

11

249

259

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#