DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells
As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.
Vyšlo v časopise:
DC-SIGN Mediated Sphingomyelinase-Activation and Ceramide Generation Is Essential for Enhancement of Viral Uptake in Dendritic Cells. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001290
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001290
Souhrn
As pattern recognition receptor on dendritic cells (DCs), DC-SIGN binds carbohydrate structures on its pathogen ligands and essentially determines host pathogen interactions because it both skews T cell responses and enhances pathogen uptake for cis infection and/or T cell trans-infection. How these processes are initiated at the plasma membrane level is poorly understood. We now show that DC-SIGN ligation on DCs by antibodies, mannan or measles virus (MV) causes rapid activation of neutral and acid sphingomyelinases followed by accumulation of ceramides in the outer membrane leaflet. SMase activation is important in promoting DC-SIGN signaling, but also for enhancement of MV uptake into DCs. DC-SIGN-dependent SMase activation induces efficient, transient recruitment of CD150, which functions both as MV uptake receptor and microbial sensor, from an intracellular Lamp-1+ storage compartment shared with acid sphingomyelinase (ASM) within a few minutes. Subsequently, CD150 is displayed at the cell surface and co-clusters with DC-SIGN. Thus, DC-SIGN ligation initiates SMase-dependent formation of ceramide-enriched membrane microdomains which promote vertical segregation of CD150 from intracellular storage compartments along with ASM. Given the ability to promote receptor and signalosome co-segration into (or exclusion from) ceramide enriched microdomains which provide a favorable environment for membrane fusion, DC-SIGN-dependent SMase activation may be of general importance for modes and efficiency of pathogen uptake into DCs, and their routing to specific compartments, but also for modulating T cell responses.
Zdroje
1. FreerG
MatteucciD
2009 Influence of dendritic cells on viral pathogenicity. PLoS Pathog 5 e1000384
2. Servet-DelpratC
VidalainPO
ValentinH
Rabourdin-CombeC
2003 Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr Top Microbiol Immunol 276 103 123
3. PohlC
ShishkovaJ
Schneider-SchauliesS
2007 Viruses and dendritic cells: enemy mine. Cell Microbiol 9 279 289
4. Schneider-SchauliesS
KlaggeIM
ter MeulenV
2003 Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276 77 101
5. VeilletteA
Cruz-MunozME
ZhongMC
2006 SLAM family receptors and SAP-related adaptors: matters arising. Trends Immunol 27 228 234
6. de SwartRL
LudlowM
de WitteL
YanagiY
van AmerongenG
2007 Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3 e178
7. KruseM
MeinlE
HenningG
KuhntC
BerchtoldS
2001 Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1 beta. J Immunol 167 1989 1995
8. Schneider-SchauliesJ
Schneider-SchauliesS
2008 Receptor interactions, tropism, and mechanisms involved in morbillivirus-induced immunomodulation. Adv Virus Res 71 173 205
9. de WitteL
AbtM
Schneider-SchauliesS
van KooykY
GeijtenbeekTB
2006 Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80 3477 3486
10. de WitteL
de VriesRD
van der VlistM
YukselS
LitjensM
2008 DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog 4 e1000049
11. GringhuisSI
den DunnenJ
LitjensM
van Het HofB
van KooykY
2007 C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26 605 616
12. GeijtenbeekTB
van KooykY
2003 Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111 698 714
13. van KooykY
GeijtenbeekTB
2003 DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3 697 709
14. BleijsDA
GeijtenbeekTB
FigdorCG
van KooykY
2001 DC-SIGN and LFA-1: a battle for ligand. Trends Immunol 22 457 463
15. Garcia-VallejoJJ
van KooykY
2009 Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 230 22 37
16. NeumannAK
ThompsonNL
JacobsonK
2008 Distribution and lateral mobility of DC-SIGN on immature dendritic cells–implications for pathogen uptake. J Cell Sci 121 634 643
17. CambiA
de LangeF
van MaarseveenNM
NijhuisM
JoostenB
2004 Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J Cell Biol 164 145 155
18. CambiA
LidkeDS
Arndt-JovinDJ
FigdorCG
JovinTM
2007 Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett 7 970 977
19. de BakkerBI
de LangeF
CambiA
KorterikJP
van DijkEM
2007 Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy. Chemphyschem 8 1473 1480
20. den DunnenJ
GringhuisSI
GeijtenbeekTB
2009 Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 58 1149 1157
21. GringhuisSI
den DunnenJ
LitjensM
van der VlistM
GeijtenbeekTB
2009 Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10 1081 1088
22. HodgesA
SharrocksK
EdelmannM
BabanD
MorisA
2007 Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8 569 577
23. LudwigIS
LekkerkerkerAN
DeplaE
BosmanF
MustersRJ
2004 Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 78 8322 8332
24. de WitteL
NabatovA
GeijtenbeekTB
2008 Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends Mol Med 14 12 19
25. MarziA
MollerP
HannaSL
HarrerT
EisemannJ
2007 Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 196 S237 246
26. HannunYA
LubertoC
2000 Ceramide in the eukaryotic stress response. Trends Cell Biol 10 73 80
27. ZhangY
LiX
BeckerKA
GulbinsE
2009 Ceramide-enriched membrane domains-Structure and function. Biochim Biophys Acta 1788 178 83
28. GrassmeH
RiethmullerJ
GulbinsE
2007 Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46 161 170
29. SchenckM
CarpinteiroA
GrassmeH
LangF
GulbinsE
2007 Ceramide: physiological and pathophysiological aspects. Arch Biochem Biophys 462 171 175
30. HannunYA
ObeidLM
2008 Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9 139 150
31. ClarkeCJ
SnookCF
TaniM
MatmatiN
MarchesiniN
2006 The extended family of neutral sphingomyelinases. Biochemistry 45 11247 11256
32. GoniFM
AlonsoA
2002 Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531 38 46
33. YinX
ZafrullahM
LeeH
Haimovitz-FriedmanA
FuksZ
2009 A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24 219 230
34. ZafrullahM
YinX
Haimovitz-FriedmanA
FuksZ
KolesnickR
2009 Kinase suppressor of Ras transphosphorylates c-Raf-1. Biochem Biophys Res Commun 390 434 440
35. RuvoloPP
2003 Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47 383 392
36. ZhangY
YaoB
DelikatS
BayoumyS
LinXH
1997 Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89 63 72
37. YanF
PolkDB
2001 Kinase suppressor of ras is necessary for tumor necrosis factor alpha activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in intestinal epithelial cells. Cancer Res 61 963 969
38. BeckerKA
GellhausA
WinterhagerE
GulbinsE
2008 Ceramide-enriched membrane domains in infectious biology and development. Subcell Biochem 49 523 538
39. GulbinsE
DreschersS
WilkerB
GrassmeH
2004 Ceramide, membrane rafts and infections. J Mol Med 82 357 363
40. UtermohlenO
HerzJ
SchrammM
KronkeM
2008 Fusogenicity of membranes: the impact of acid sphingomyelinase on innate immune responses. Immunobiology 213 307 314
41. CaparrosE
MunozP
Sierra-FilardiE
Serrano-GomezD
Puig-KrogerA
2006 DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107 3950 3958
42. FadeelB
GleissB
HogstrandK
ChandraJ
WiedmerT
1999 Phosphatidylserine exposure during apoptosis is a cell-type-specific event and does not correlate with plasma membrane phospholipid scramblase expression. Biochem Biophys Res Commun 266 504 511
43. CambiA
BeerenI
JoostenB
FransenJA
FigdorCG
2009 The C-type lectin DC-SIGN internalizes soluble antigens and HIV-1 virions via a clathrin-dependent mechanism. Eur J Immunol 39 1923 1928
44. GeijtenbeekTB
KwonDS
TorensmaR
van VlietSJ
van DuijnhovenGC
2000 DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100 587 597
45. GeijtenbeekTB
van KooykY
2003 DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276 31 54
46. HalaryF
AmaraA
Lortat-JacobH
MesserleM
DelaunayT
2002 Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17 653 664
47. HuwilerA
BrunnerJ
HummelR
VervoordeldonkM
StabelS
1996 Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci U S A 93 6959 6963
48. YaoB
ZhangY
DelikatS
MathiasS
BasuS
1995 Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378 307 310
49. RozenovaKA
DeevskaGM
KarakashianAA
Nikolova-KarakashianMN
2010 Studies on the role of acid sphingomyelinase and ceramide in the regulation of TACE activity and TNFα secretion in macrophages. J Biol Chem 285 21103 13
50. GassertE
AvotaE
HarmsH
KrohneG
GulbinsE
2009 Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5 e1000623
51. MathiasS
YounesA
KanCC
OrlowI
JosephC
1993 Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259 519 522
52. Adam-KlagesS
AdamD
WiegmannK
StruveS
KolanusW
1996 FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86 937 947
53. HashiguchiT
MaenakaK
YanagiY
2008 X-ray crystallographic analysis of measles virus hemagglutinin. Uirusu 58 1 10
54. BiebackK
LienE
KlaggeIM
AvotaE
Schneider-SchauliesJ
2002 Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76 8729 8736
55. MinagawaH
TanakaK
OnoN
TatsuoH
YanagiY
2001 Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82 2913 2917
56. FalconeS
PerrottaC
De PalmaC
PiscontiA
ScioratiC
2004 Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173 4452 4463
57. SallustoF
NicoloC
De MariaR
CorintiS
TestiR
1996 Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med 184 2411 2416
58. FranchiL
MalisanF
TomassiniB
TestiR
2006 Ceramide catabolism critically controls survival of human dendritic cells. J Leukoc Biol 79 166 172
59. MacKichanML
DeFrancoAL
1999 Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274 1767 1775
60. RotoloJA
ZhangJ
DonepudiM
LeeH
FuksZ
2005 Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280 26425 26434
61. OhgimotoS
OhgimotoK
NiewieskS
KlaggeIM
PfeufferJ
2001 The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82 1835 1844
62. FinneganCM
BlumenthalR
2006 Fenretinide inhibits HIV infection by promoting viral endocytosis. Antiviral Res 69 116 123
63. FinneganCM
RawatSS
ChoEH
GuiffreDL
LockettS
2007 Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J Virol 81 5294 5304
64. JacobsA
GargH
ViardM
RavivY
PuriA
2008 HIV-1 envelope glycoprotein-mediated fusion and pathogenesis: implications for therapy and vaccine development. Vaccine 26 3026 3035
65. BergerSB
RomeroX
MaC
WangG
FaubionWA
2010 SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11 920 927
66. SpielhoferP
BachiT
FehrT
ChristiansenG
CattaneoR
1998 Chimeric measles viruses with a foreign envelope. J Virol 72 2150 2159
67. KorzeniowskiM
ShakorAB
MakowskaA
DrzewieckaA
BielawskaA
2007 Fc gamma RII activation induces cell surface ceramide production which participates in the assembly of the receptor signaling complex. Cell Physiol Biochem 20 347 356
68. TellierE
Negre-SalvayreA
BocquetB
ItoharaS
HannunYA
2007 Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol 27 2997 3007
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite
- Type I Interferon Signaling Regulates Ly6C Monocytes and Neutrophils during Acute Viral Pneumonia in Mice
- Infections in Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction
- The ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation