#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phosphatidylinositol 3-Monophosphate Is Involved in Apicoplast Biogenesis


Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs.


Vyšlo v časopise: Phosphatidylinositol 3-Monophosphate Is Involved in Apicoplast Biogenesis. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001286
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001286

Souhrn

Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs.


Zdroje

1. VanhaesebroeckB

LeeversSJ

PanayotouG

WaterfieldMD

1997 Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22 267 272

2. FosterFM

TraerCJ

AbrahamSM

FryMJ

2003 The phosphoinositide (PI) 3-kinase family. J Cell Sci 116 3037 3040

3. VanhaesebroeckB

LeeversSJ

AhmadiK

TimmsJ

KatsoR

2001 Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70 535 602

4. HermanPK

EmrSD

1990 Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10 6742 6754

5. OdorizziG

BabstM

EmrSD

2000 Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25 229 235

6. LindmoK

StenmarkH

2006 Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119 605 614

7. KraussM

HauckeV

2007 Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8 241 246

8. StenmarkH

AaslandR

DriscollPC

2002 The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett 513 77 84

9. EllsonCD

AndrewsS

StephensLR

HawkinsPT

2002 The PX domain: a new phosphoinositide-binding module. J Cell Sci 115 1099 1105

10. KohlerS

DelwicheCF

DennyPW

TilneyLG

WebsterP

1997 A plastid of probable green algal origin in Apicomplexan parasites. Science 275 1485 1489

11. McFaddenGI

ReithME

MunhollandJ

Lang-UnnaschN

1996 Plastid in human parasites. Nature 381 482

12. RobibaroB

StedmanTT

CoppensI

NgoHM

PypaertM

2002 Toxoplasma gondii Rab5 enhances cholesterol acquisition from host cells. Cell Microbiol 4 139 152

13. ShawMK

RoosDS

TilneyLG

1998 Acidic compartments and rhoptry formation in Toxoplasma gondii. Parasitology 117 Pt 5 435 443

14. NgoHM

YangM

JoinerKA

2004 Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol 52 1531 1541

15. GajriaB

BahlA

BrestelliJ

DommerJ

FischerS

2008 ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36 D553 556

16. BackerJM

2008 The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410 1 17

17. GilloolyDJ

MorrowIC

LindsayM

GouldR

BryantNJ

2000 Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. Embo J 19 4577 4588

18. HallBS

Gabernet-CastelloC

VoakA

GouldingD

NatesanSK

2006 TbVps34, the trypanosome orthologue of Vps34, is required for Golgi complex segregation. J Biol Chem 281 27600 27612

19. VermeerJE

van LeeuwenW

Tobena-SantamariaR

LaxaltAM

JonesDR

2006 Visualization of PtdIns3P dynamics in living plant cells. Plant J 47 687 700

20. SheffieldHG

MeltonML

1968 The fine structure and reproduction of Toxoplasma gondii. J Parasitol 54 209 226

21. NishiM

HuK

MurrayJM

RoosDS

2008 Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci 121 1559 1568

22. Herm-GotzA

Agop-NersesianC

MunterS

GrimleyJS

WandlessTJ

2007 Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4 1003 1005

23. BanaszynskiLA

SellmyerMA

ContagCH

WandlessTJ

ThorneSH

2008 Chemical control of protein stability and function in living mice. Nat Med 14 1123 1127

24. GaullierJM

SimonsenA

D'ArrigoA

BremnesB

StenmarkH

1998 FYVE fingers bind PtdIns(3)P. Nature 394 432 433

25. StriepenB

CrawfordMJ

ShawMK

TilneyLG

SeeberF

2000 The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151 1423 1434

26. PocciaD

LarijaniB

2009 Phosphatidylinositol metabolism and membrane fusion. Biochem J 418 233 246

27. van DoorenGG

ReiffSB

TomovaC

MeissnerM

HumbelBM

2009 A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19 267 276

28. WalkerEH

PacoldME

PerisicO

StephensL

HawkinsPT

2000 Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6 909 919

29. FicheraME

BhopaleMK

RoosDS

1995 In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother 39 1530 1537

30. PfefferkornER

NothnagelRF

BorotzSE

1992 Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicrob Agents Chemother 36 1091 1096

31. HeCY

ShawMK

PletcherCH

StriepenB

TilneyLG

2001 A plastid segregation defect in the protozoan parasite Toxoplasma gondii. Embo J 20 330 339

32. DeRocherAE

CoppensI

KarnatakiA

GilbertLA

RomeME

2008 A thioredoxin family protein of the apicoplast periphery identifies abundant candidate transport vesicles in Toxoplasma gondii. Eukaryot Cell 7 1518 1529

33. KarnatakiA

DerocherAE

CoppensI

FeaginJE

ParsonsM

2007 A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence. Traffic 8 1543 1553

34. KarnatakiA

DerocherA

CoppensI

NashC

FeaginJE

2007 Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 63 1653 1668

35. ParsonsM

KarnatakiA

DerocherAE

2009 Evolving insights into protein trafficking to the multiple compartments of the apicomplexan plastid. J Eukaryot Microbiol 56 214 220

36. NicholsBA

ChiappinoML

O'ConnorGR

1983 Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct Res 83 85 98

37. FiliN

CallejaV

WoscholskiR

ParkerPJ

LarijaniB

2006 Compartmental signal modulation: Endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Natl Acad Sci U S A 103 15473 15478

38. VieiraOV

BucciC

HarrisonRE

TrimbleWS

LanzettiL

2003 Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 23 2501 2514

39. ElliottDA

McIntoshMT

HosgoodHD3rd

ChenS

ZhangG

2008 Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 105 2463 2468

40. VaidA

RanjanR

SmytheWA

HoppeHC

SharmaP

2010 PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115 2500 2507

41. TawkL

ChicanneG

DubremetzJF

RichardV

PayrastreB

2010 Phosphatidylinositol 3-Phosphate, an Essential Lipid in Plasmodium, Localizes to the Food Vacuole Membrane and the Apicoplast. Eukaryot Cell 9 1519 1530

42. DonaldRG

CarterD

UllmanB

RoosDS

1996 Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271 14010 14019

43. BesteiroS

Bertrand-MichelJ

LebrunM

VialH

DubremetzJF

2008 Lipidomic analysis of Toxoplasma gondii tachyzoites rhoptries: further insights into the role of cholesterol. Biochem J 415 87 96

44. PayrastreB

2004 Phosphoinositides: lipid kinases and phosphatases. Methods Mol Biol 273 201 212

45. ReissM

ViebigN

BrechtS

FourmauxMN

SoeteM

2001 Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 152 563 578

46. CeredeO

DubremetzJF

SoeteM

DesleeD

VialH

2005 Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J Exp Med 201 453 463

47. AgrawalS

Van DoorenGG

BeattyWL

StriepenB

2009 Genetic evidence that endosymbiont-derived ERAD system functions in import of apicoplast proteins. J Biol Chem 27 33683 33691

48. CouvreurG

SadakA

FortierB

DubremetzJF

1988 Surface antigens of Toxoplasma gondii. Parasitol 97 1 10

49. SadakA

TaghyZ

FortierB

DubremetzJF

1988 Characterization of a family of rhoptry proteins of Toxoplasma gondii. Mol Biochem Parasitol 29 203 211

50. AchbarouA

Mercereau-PuijalonO

AuthemanJM

FortierB

CamusD

1991 Characterization of microneme proteins of Toxoplasma gondii. Mol Biochem Parasitol 47 223 233

51. BolteS

CordelieresFP

2006 A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224 213 232

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#