#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

DNA Damage and Reactive Nitrogen Species are Barriers to Colonization of the Infant Mouse Intestine


Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants.


Vyšlo v časopise: DNA Damage and Reactive Nitrogen Species are Barriers to Colonization of the Infant Mouse Intestine. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001295
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001295

Souhrn

Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants.


Zdroje

1. CarpenterEP

CorbettA

ThomsonH

AdachaJ

JensenK

2007 AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis. Embo J 26 1363 1372

2. MerinoD

Reglier-PoupetH

BercheP

CharbitA

2002 A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Mol Microbiol 44 877 887

3. O'RourkeEJ

ChevalierC

PintoAV

ThibergeJM

IelpiL

2003 Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A 100 2789 2794

4. RichardsonAR

SolivenKC

CastorME

BarnesPD

LibbySJ

2009 The Base Excision Repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog 5 e1000451

5. SuvarnapunyaAE

LagasseHA

SteinMA

2003 The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol 48 549 559

6. WangG

AlamuriP

HumayunMZ

TaylorDE

MaierRJ

2005 The Helicobacter pylori MutS protein confers protection from oxidative DNA damage. Mol Microbiol 58 166 176

7. FriedbergEC

WalkerGC

SiedeW

WoodRD

SchultzRA

EllenbergerT

2005 DNA Repair and Mutagenesis Washington ASM Press 463

8. BuchmeierNA

LibbySJ

XuY

LoewenPC

SwitalaJ

1995 DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95 1047 1053

9. CuccuiJ

EastonA

ChuKK

BancroftGJ

OystonPC

2007 Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect Immun 75 1186 1195

10. MertensK

LantsheerL

EnnisDG

SamuelJE

2008 Constitutive SOS expression and damage-inducible AddAB-mediated recombinational repair systems for Coxiella burnetii as potential adaptations for survival within macrophages. Mol Microbiol 69 1411 1426

11. SimmonsLA

FotiJJ

CohenSE

WalkerGC

2008 Escherichia coli and Salmonella: cellular and molecular biology;

NystromT

SlauchJM

SquiresCL

Washington, D. C. ASM Press

12. GiraudA

MaticI

TenaillonO

ClaraA

RadmanM

2001 Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291 2606 2608

13. LeClercJE

LiB

PayneWL

CebulaTA

1996 High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274 1208 1211

14. OliverA

CantonR

CampoP

BaqueroF

BlazquezJ

2000 High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288 1251 1254

15. MaticI

RadmanM

TaddeiF

PicardB

DoitC

1997 Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277 1833 1834

16. De GrooteMA

OchsnerUA

ShilohMU

NathanC

McCordJM

1997 Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A 94 13997 14001

17. MacMickingJD

NathanC

HomG

ChartrainN

FletcherDS

1995 Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81 641 650

18. ImlayJA

2008 Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77 755 776

19. PooleRK

2005 Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc Trans 33 176 180

20. BangIS

LiuL

Vazquez-TorresA

CrouchML

StamlerJS

2006 Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp. J Biol Chem 281 28039 28047

21. NelsonET

ClementsJD

FinkelsteinRA

1976 Vibrio cholerae adherence and colonization in experimental cholera: electron microscopic studies. Infect Immun 14 527 547

22. SchrankGD

VerweyWF

1976 Distribution of cholera organisms in experimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infect Immun 13 195 203

23. FordtranJS

WalshJH

1973 Gastric acid secretion rate and buffer content of the stomach after eating. Results in normal subjects and in patients with duodenal ulcer. J Clin Invest 52 645 657

24. SmithJL

2003 The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 66 1292 1303

25. DuncanC

DougallH

JohnstonP

GreenS

BroganR

1995 Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1 546 551

26. LundbergJO

WeitzbergE

GladwinMT

2008 The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7 156 167

27. ManningPB

CoulterST

JennessR

1968 Determination of nitrate and nitrite in milk and dry milk products. J Dairy Sci 51 1725 1730

28. DykhuizenRS

FrazerR

DuncanC

SmithCC

GoldenM

1996 Antimicrobial effect of acidified nitrite on gut pathogens: importance of dietary nitrate in host defense. Antimicrob Agents Chemother 40 1422 1425

29. IovineNM

PursnaniS

VoldmanA

WassermanG

BlaserMJ

2008 Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect Immun 76 986 993

30. RaoA

JumpRL

PultzNJ

PultzMJ

DonskeyCJ

2006 In vitro killing of nosocomial pathogens by acid and acidified nitrite. Antimicrob Agents Chemother 50 3901 3904

31. XuJ

XuX

VerstraeteW

2001 The bactericidal effect and chemical reactions of acidified nitrite under conditions simulating the stomach. J Appl Microbiol 90 523 529

32. BourretTJ

PorwollikS

McClellandM

ZhaoR

GrecoT

2008 Nitric oxide antagonizes the acid tolerance response that protects Salmonella against innate gastric defenses. PLoS One 3 e1833

33. LijinskyW

1977 Nitrosamines and nitrosamides in the etiology of gastrointestinal cancer. Cancer 40 2446 2449

34. CrawfordMJ

GoldbergDE

1998 Role for the Salmonella flavohemoglobin in protection from nitric oxide. J Biol Chem 273 12543 12547

35. KimCC

MonackD

FalkowS

2003 Modulation of virulence by two acidified nitrite-responsive loci of Salmonella enterica serovar Typhimurium. Infect Immun 71 3196 3205

36. VenkateshJ

KumarP

KrishnaPS

ManjunathR

VarshneyU

2003 Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J Biol Chem 278 24350 24358

37. MullerCA

AutenriethIB

PeschelA

2005 Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci 62 1297 1307

38. QuinonesM

DavisBM

WaldorMK

2006 Activation of the Vibrio cholerae SOS response is not required for intestinal cholera toxin production or colonization. Infect Immun 74 927 930

39. LjungquistS

LindahlT

Howard-FlandersP

1976 Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J Bacteriol 126 646 653

40. YajkoDM

WeissB

1975 Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc Natl Acad Sci U S A 72 688 692

41. CunninghamRP

SaporitoSM

SpitzerSG

WeissB

1986 Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol 168 1120 1127

42. CoxEC

DegnenGE

ScheppeML

1972 Mutator gene studies in Escherichia coli: the mutS gene. Genetics 72 551 567

43. DempleB

HalbrookJ

LinnS

1983 Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J Bacteriol 153 1079 1082

44. BelfortM

Pedersen-LaneJ

1984 Genetic system for analyzing Escherichia coli thymidylate synthase. J Bacteriol 160 371 378

45. DutraBE

LovettST

2006 Cis and trans-acting effects on a mutational hotspot involving a replication template switch. J Mol Biol 356 300 311

46. SimmonsLA

DaviesBW

GrossmanAD

WalkerGC

2008 Beta clamp directs localization of mismatch repair in Bacillus subtilis. Mol Cell 29 291 301

47. VasudevanSG

ArmaregoWL

ShawDC

LilleyPE

DixonNE

1991 Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet 226 49 58

48. GardnerAM

GardnerPR

2002 Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem 277 8166 8171

49. AbbasK

BretonJ

PicotCR

QuesniauxV

BoutonC

2009 Signaling events leading to peroxiredoxin 5 up-regulation in immunostimulated macrophages. Free Radic Biol Med 47 794 802

50. FangFC

DeGrooteMA

FosterJW

BaumlerAJ

OchsnerU

1999 Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 96 7502 7507

51. HebrardM

VialaJP

MeresseS

BarrasF

AusselL

2009 Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 191 4605 4614

52. SigaudS

BecquetV

FrendoP

PuppoA

HerouartD

1999 Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 181 2634 2639

53. Vazquez-TorresA

StevaninT

Jones-CarsonJ

CastorM

ReadRC

2008 Analysis of nitric oxide-dependent antimicrobial actions in macrophages and mice. Methods Enzymol 437 521 538

54. MerrellDS

CamilliA

1999 The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 34 836 849

55. PaulyGT

HughesSH

MoschelRC

1998 Comparison of mutagenesis by O6-methyl- and O6-ethylguanine and O4-methylthymine in Escherichia coli using double-stranded and gapped plasmids. Carcinogenesis 19 457 461

56. GabrielC

CaminsA

SuredaFX

AquirreL

EscubedoE

1997 Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods 38 93 98

57. KestonAS

BrandtR

1965 The Fluorometric Analysis of Ultramicro Quantities of Hydrogen Peroxide. Anal Biochem 11 1 5

58. PosselH

NoackH

AugustinW

KeilhoffG

WolfG

1997 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 416 175 178

59. AngelichioMJ

SpectorJ

WaldorMK

CamilliA

1999 Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun 67 3733 3739

60. QadriF

ChowdhuryMI

FaruqueSM

SalamMA

AhmedT

2007 Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine 25 231 238

61. RitchieJM

RuiH

BronsonRT

WaldorMK

2010 Back to the future: studying cholera pathogenesis using infant rabbits. MBio 1 e00047 00010

62. MerrellDS

HavaDL

CamilliA

2002 Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43 1471 1491

63. AlvarezB

Ferrer-SuetaG

RadiR

1998 Slowing of peroxynitrite decomposition in the presence of mannitol and ethanol. Free Radic Biol Med 24 1331 1337

64. AbuaitaBH

WitheyJH

2009 Bicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 77 4111 4120

65. IdeH

TedzukaK

ShimzuH

KimuraY

PurmalAA

1994 Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry 33 7842 7847

66. GeeJM

ValderasMW

KovachME

GrippeVK

RobertsonGT

2005 The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun 73 2873 2880

67. MillerVL

MekalanosJJ

1988 A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170 2575 2583

68. MetcalfWW

JiangW

DanielsLL

KimSK

HaldimannA

1996 Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35 1 13

69. BaselskiVS

ParkerCD

1978 Intestinal distribution of Vibrio cholerae in orally infected infant mice: kinetics of recovery of radiolabel and viable cells. Infect Immun 21 518 525

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#