#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus


The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.


Vyšlo v časopise: Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001266
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001266

Souhrn

The herpesviruses, like most other DNA viruses, replicate in the host cell nucleus. Subnuclear domains known as promyelocytic leukemia protein nuclear bodies (PML-NBs), or ND10 bodies, have been implicated in restricting early herpesviral gene expression. These viruses have evolved countermeasures to disperse PML-NBs, as shown in cells infected in vitro, but information about the fate of PML-NBs and their functions in herpesvirus infected cells in vivo is limited. Varicella-zoster virus (VZV) is an alphaherpesvirus with tropism for skin, lymphocytes and sensory ganglia, where it establishes latency. Here, we identify large PML-NBs that sequester newly assembled nucleocapsids (NC) in neurons and satellite cells of human dorsal root ganglia (DRG) and skin cells infected with VZV in vivo. Quantitative immuno-electron microscopy revealed that these distinctive nuclear bodies consisted of PML fibers forming spherical cages that enclosed mature and immature VZV NCs. Of six PML isoforms, only PML IV promoted the sequestration of NCs. PML IV significantly inhibited viral infection and interacted with the ORF23 capsid surface protein, which was identified as a target for PML-mediated NC sequestration. The unique PML IV C-terminal domain was required for both capsid entrapment and antiviral activity. Similar large PML-NBs, termed clastosomes, sequester aberrant polyglutamine (polyQ) proteins, such as Huntingtin (Htt), in several neurodegenerative disorders. We found that PML IV cages co-sequester HttQ72 and ORF23 protein in VZV infected cells. Our data show that PML cages contribute to the intrinsic antiviral defense by sensing and entrapping VZV nucleocapsids, thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The efficient sequestration of virion capsids in PML cages appears to be the outcome of a basic cytoprotective function of this distinctive category of PML-NBs in sensing and safely containing nuclear aggregates of aberrant proteins.


Zdroje

1. IshovAM

SotnikovAG

NegorevD

VladimirovaOV

NeffN

1999

PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1.

J Cell Biol

147

221

234

2. ZhongS

MullerS

RonchettiS

FreemontPS

DejeanA

2000

Role of SUMO-1-modified PML in nuclear body formation.

Blood

95

2748

2752

3. Lallemand-BreitenbachV

ZhuJ

PuvionF

KokenM

HonoreN

2001

Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation.

J Exp Med

193

1361

1371

4. EskiwCH

DellaireG

MymrykJS

Bazett-JonesDP

2003

Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly.

J Cell Sci

116

4455

4466

5. MurataniM

GerlichD

JanickiSM

GebhardM

EilsR

2002

Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus.

Nat Cell Biol

4

106

110

6. BrandP

LenserT

HemmerichP

2010

Assembly dynamics of PML nuclear bodies in living cells.

PMC Biophys

3

3

7. ZhongS

SalomoniP

PandolfiPP

2000

The transcriptional role of PML and the nuclear body.

Nat Cell Biol

2

E85

90

8. DellaireG

Bazett-JonesDP

2004

PML nuclear bodies: dynamic sensors of DNA damage and cellular stress.

Bioessays

26

963

977

9. TakahashiY

Lallemand-BreitenbachV

ZhuJ

de TheH

2004

PML nuclear bodies and apoptosis.

Oncogene

23

2819

2824

10. BernardiR

PandolfiPP

2003

Role of PML and the PML-nuclear body in the control of programmed cell death.

Oncogene

22

9048

9057

11. Lallemand-BreitenbachV

de TheH

2010

PML nuclear bodies.

2

5

Cold Spring Harb Perspect Biol

12. GiorgiC

ItoK

LinHK

SantangeloC

WieckowskiMR

2010

PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release.

Science

330

1183

1184

13. FagioliM

AlcalayM

PandolfiPP

VenturiniL

MencarelliA

1992

Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms.

Oncogene

7

1083

1091

14. JensenK

ShielsC

FreemontPS

2001

PML protein isoforms and the RBCC/TRIM motif.

Oncogene

20

7223

7233

15. KastnerP

PerezA

LutzY

Rochette-EglyC

GaubMP

1992

Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins.

Embo J

11

629

642

16. BeechSJ

LethbridgeKJ

KillickN

McGlincyN

LeppardKN

2005

Isoforms of the promyelocytic leukemia protein differ in their effects on ND10 organization.

Exp Cell Res

307

109

117

17. CondemineW

TakahashiY

ZhuJ

Puvion-DutilleulF

GueganS

2006

Characterization of endogenous human promyelocytic leukemia isoforms.

Cancer Res

66

6192

6198

18. Weidtkamp-PetersS

LenserT

NegorevD

GerstnerN

HofmannTG

2008

Dynamics of component exchange at PML nuclear bodies.

J Cell Sci

121

2731

2743

19. EverettRD

Chelbi-AlixMK

2007

PML and PML nuclear bodies: implications in antiviral defence.

Biochimie

89

819

830

20. TavalaiN

StammingerT

2008

New insights into the role of the subnuclear structure ND10 for viral infection.

Biochim Biophys Acta

1783

2207

2221

21. PellettPE

RoizmanB

2007

The Family: Herpesviridae, A Brief Introduction.

KnipeDM

HowleyPM

Fields Virology

Philadelphia

Lippincott Williams and Wilkins, a Wolters Kluwer Business

2479

2500

5 ed

22. MettenleiterTC

KluppBG

GranzowH

2009

Herpesvirus assembly: an update.

Virus Res

143

222

234

23. EverettRD

RechterS

PapiorP

TavalaiN

StammingerT

2006

PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0.

J Virol

80

7995

8005

24. TavalaiN

PapiorP

RechterS

LeisM

StammingerT

2006

Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections.

J Virol

80

8006

8018

25. MaulGG

GuldnerHH

SpivackJG

1993

Modification of discrete nuclear domains induced by herpes simplex virus type 1 immediate early gene 1 product (ICP0).

J Gen Virol

74

2679

2690

26. EverettRD

MaulGG

1994

HSV-1 IE protein Vmw110 causes redistribution of PML.

Embo J

13

5062

5069

27. Chelbi-AlixMK

de TheH

1999

Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins.

Oncogene

18

935

941

28. BoutellC

SadisS

EverettRD

2002

Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro.

J Virol

76

841

850

29. CheeAV

LopezP

PandolfiPP

RoizmanB

2003

Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects.

J Virol

77

7101

7105

30. CohenJI

StrausSE

ArvinAM

2007

Varicella-Zoster Virus.

KnipeDM

HowleyPM

Fields Virology

Philadelphia

Lippincott Williams and Wilkins, a Wolters Kluwer Business

2773

2818

5 ed

31. KyratsousCA

SilversteinSJ

2009

Components of nuclear domain 10 bodies regulate varicella-zoster virus replication.

J Virol

83

4262

4274

32. ReicheltM

BradyJ

ArvinAM

2009

The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level.

J Virol

83

3904

3918

33. MuellerNH

GildenDH

CohrsRJ

MahalingamR

NagelMA

2008

Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency.

Neurol Clin

26

675

697

34. MoffatJF

SteinMD

KaneshimaH

ArvinAM

1995

Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice.

J Virol

69

5236

5242

35. MoffatJF

ZerboniL

SommerMH

HeinemanTC

CohenJI

1998

The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse.

Proc Natl Acad Sci U S A

95

11969

11974

36. ZerboniL

KuCC

JonesCD

ZehnderJL

ArvinAM

2005

Varicella-zoster virus infection of human dorsal root ganglia in vivo.

Proc Natl Acad Sci U S A

102

6490

6495

37. ArvinAM

MoffatJ

SommerM

OliverS

CheX

2010

Varicella-Zoster Virus T Cell Tropism and the Pathogenesis of Skin Infection.

Curr Top Microbiol Immunol

342

189

209

38. ZerboniL

ReicheltM

ArvinA

2010

Varicella-Zoster Virus Neurotropism in SCID Mouse-Human Dorsal Root Ganglia Xenografts.

Curr Top Microbiol Immunol

342

255

276

39. KuCC

ZerboniL

ItoH

GrahamBS

WallaceM

2004

Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha.

J Exp Med

200

917

925

40. SkinnerPJ

KoshyBT

CummingsCJ

KlementIA

HelinK

1997

Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures.

Nature

389

971

974

41. YamadaM

SatoT

ShimohataT

HayashiS

IgarashiS

2001

Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases.

Am J Pathol

159

1785

1795

42. TakahashiJ

FujigasakiH

ZanderC

El HachimiKH

StevaninG

2002

Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content.

Brain

125

1534

1543

43. TakahashiJ

FujigasakiH

IwabuchiK

BruniAC

UchiharaT

2003

PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases.

Neurobiol Dis

13

230

237

44. JanerA

MartinE

MurielMP

LatoucheM

FujigasakiH

2006

PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins.

J Cell Biol

174

65

76

45. WoulfeJ

2008

Nuclear bodies in neurodegenerative disease.

Biochim Biophys Acta

1783

2195

2206

46. WilliamsAJ

PaulsonHL

2008

Polyglutamine neurodegeneration: protein misfolding revisited.

Trends Neurosci

31

521

528

47. YasudaS

InoueK

HirabayashiM

HigashiyamaH

YamamotoY

1999

Triggering of neuronal cell death by accumulation of activated SEK1 on nuclear polyglutamine aggregations in PML bodies.

Genes Cells

4

743

756

48. VillagraNT

NavascuesJ

CasafontI

Val-BernalJF

LafargaM

2006

The PML-nuclear inclusion of human supraoptic neurons: a new compartment with SUMO-1- and ubiquitin-proteasome-associated domains.

Neurobiol Dis

21

181

193

49. LafargaM

BercianoMT

PenaE

MayoI

CastanoJG

2002

Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome.

Mol Biol Cell

13

2771

2782

50. ArrasateM

MitraS

SchweitzerES

SegalMR

FinkbeinerS

2004

Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death.

Nature

431

805

810

51. QinQ

InatomeR

HottaA

KojimaM

YamamuraH

2006

A novel GTPase, CRAG, mediates promyelocytic leukemia protein-associated nuclear body formation and degradation of expanded polyglutamine protein.

J Cell Biol

172

497

504

52. TorashimaT

KoyamaC

IizukaA

MitsumuraK

TakayamaK

2008

Lentivector-mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia.

EMBO Rep

9

393

399

53. StuurmanN

de GraafA

FlooreA

JossoA

HumbelB

1992

A monoclonal antibody recognizing nuclear matrix-associated nuclear bodies.

J Cell Sci

101

Pt 4

773

784

54. ChaudhuriV

SommerM

RajamaniJ

ZerboniL

ArvinAM

2008

Functions of Varicella-zoster virus ORF23 capsid protein in viral replication and the pathogenesis of skin infection.

J Virol

82

10231

10246

55. EverettRD

SourvinosG

LeiperC

ClementsJB

OrrA

2004

Formation of nuclear foci of the herpes simplex virus type 1 regulatory protein ICP4 at early times of infection: localization, dynamics, recruitment of ICP27, and evidence for the de novo induction of ND10-like complexes.

J Virol

78

1903

1917

56. WilemanT

2007

Aggresomes and pericentriolar sites of virus assembly: cellular defense or viral design?

Annu Rev Microbiol

61

149

167

57. DayPM

RodenRB

LowyDR

SchillerJT

1998

The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains.

J Virol

72

142

150

58. FlorinL

SchaferF

SotlarK

StreeckRE

SappM

2002

Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2.

Virology

295

97

107

59. Shishido-HaraY

IchinoseS

HiguchiK

HaraY

YasuiK

2004

Major and minor capsid proteins of human polyomavirus JC cooperatively accumulate to nuclear domain 10 for assembly into virions.

J Virol

78

9890

9903

60. Puvion-DutilleulF

VenturiniL

GuilleminMC

de TheH

PuvionE

1995

Sequestration of PML and Sp100 proteins in an intranuclear viral structure during herpes simplex virus type 1 infection.

Exp Cell Res

221

448

461

61. TokuyasuKT

1973

A technique for ultracryotomy of cell suspensions and tissues.

J Cell Biol

57

551

565

62. GriffithsG

SimonsK

WarrenG

TokuyasuKT

1983

Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins.

Methods Enzymol

96

466

485

63. WebsterP

SchwarzH

GriffithsG

2008

Preparation of cells and tissues for immuno EM.

Methods Cell Biol

88

45

58

64. ZhouZH

HeJ

JakanaJ

TatmanJD

RixonFJ

1995

Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids.

Nat Struct Biol

2

1026

1030

65. ZhouZH

DoughertyM

JakanaJ

HeJ

RixonFJ

2000

Seeing the herpesvirus capsid at 8.5 A.

Science

288

877

880

66. McDonaldKentL

MorphewMary

VerkadePaul

Mueller-ReichertThomas

2007

Recent Advances in High-Pressure Freezing: Equipment and Specimen-Loading Methods.

KuoJ

Methods In Molecular Biology: Electron Microscopy, Methods and Protocols

Totowa, New Jersey

Humana Press

143

173

2 ed

67. RabouilleC

1999

Quantitative aspects of immunogold labeling in embedded and nonembedded sections.

Methods Mol Biol

117

125

144

68. GildenDH

RozenmanY

MurrayR

DevlinM

VafaiA

1987

Detection of varicella-zoster virus nucleic acid in neurons of normal human thoracic ganglia.

Ann Neurol

22

377

380

69. LevinMJ

CaiGY

ManchakMD

PizerLI

2003

Varicella-zoster virus DNA in cells isolated from human trigeminal ganglia.

J Virol

77

6979

6987

70. WangK

LauTY

MoralesM

MontEK

StrausSE

2005

Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level.

J Virol

79

14079

14087

71. MoriuchiH

MoriuchiM

SmithHA

CohenJI

1994

Varicella-zoster virus open reading frame 4 protein is functionally distinct from and does not complement its herpes simplex virus type 1 homolog, ICP27.

J Virol

68

1987

1992

72. DefechereuxP

DebrusS

BaudouxL

RentierB

PietteJ

1997

Varicella-zoster virus open reading frame 4 encodes an immediate-early protein with posttranscriptional regulatory properties.

J Virol

71

7073

7079

73. HomaFL

BrownJC

1997

Capsid assembly and DNA packaging in herpes simplex virus.

Rev Med Virol

7

107

122

74. ChenJJ

ZhuZ

GershonAA

GershonMD

2004

Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster.

Cell

119

915

926

75. IwataA

ChristiansonJC

BucciM

EllerbyLM

NukinaN

2005

Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation.

Proc Natl Acad Sci U S A

102

13135

13140

76. BurkhamJ

CoenDM

HwangCB

WellerSK

2001

Interactions of herpes simplex virus type 1 with ND10 and recruitment of PML to replication compartments.

J Virol

75

2353

2367

77. EverettRD

MurrayJ

2005

ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection.

J Virol

79

5078

5089

78. DelhayeS

PaulS

BlakqoriG

MinetM

WeberF

2006

Neurons produce type I interferon during viral encephalitis.

Proc Natl Acad Sci U S A

103

7835

7840

79. ForestT

BarnardS

BainesJD

2005

Active intranuclear movement of herpesvirus capsids.

Nat Cell Biol

7

429

431

80. FeierbachB

PiccinottiS

BisherM

DenkW

EnquistLW

2006

Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

PLoS Pathog

2

e85

81. LopezP

JacobRJ

RoizmanB

2002

Overexpression of promyelocytic leukemia protein precludes the dispersal of ND10 structures and has no effect on accumulation of infectious herpes simplex virus 1 or its proteins.

J Virol

76

9355

9367

82. DayPM

BakerCC

LowyDR

SchillerJT

2004

Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression.

Proc Natl Acad Sci U S A

101

14252

14257

83. Shishido-HaraY

HiguchiK

OharaS

DuyckaertsC

HauwJJ

2008

Promyelocytic leukemia nuclear bodies provide a scaffold for human polyomavirus JC replication and are disrupted after development of viral inclusions in progressive multifocal leukoencephalopathy.

J Neuropathol Exp Neurol

67

299

308

84. HallerO

StertzS

KochsG

2007

The Mx GTPase family of interferon-induced antiviral proteins.

Microbes Infect

9

1636

1643

85. KochsG

JanzenC

HohenbergH

HallerO

2002

Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes.

Proc Natl Acad Sci U S A

99

3153

3158

86. ReicheltM

StertzS

Krijnse-LockerJ

HallerO

KochsG

2004

Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes.

Traffic

5

772

784

87. SchunemannS

MainkaC

WolffMH

1998

Subclinical reactivation of varicella-zoster virus in immunocompromised and immunocompetent individuals.

Intervirology

41

98

102

88. ReicheltM

ZerboniL

ArvinAM

2008

Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia.

J Virol

82

3971

3983

89. AuWY

KwongYL

2005

Frequent varicella zoster reactivation associated with therapeutic use of arsenic trioxide: portents of an old scourge.

J Am Acad Dermatol

53

890

892

90. NouriK

RicottiCAJr

BouzariN

ChenH

AhnE

2006

The incidence of recurrent herpes simplex and herpes zoster infection during treatment with arsenic trioxide.

J Drugs Dermatol

5

182

185

91. JeanneM

Lallemand-BreitenbachV

FerhiO

KokenM

Le BrasM

2010

PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3.

Cancer Cell

18

88

98

92. ZhangXW

YanXJ

ZhouZR

YangFF

WuZY

2010

Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML.

Science

328

240

243

93. Vizoso PintoMG

VillegasJM

PeterJ

HaaseR

HaasJ

2009

LuMPIS-a modified luminescence-based mammalian interactome mapping pull-down assay for the investigation of protein-protein interactions encoded by GC-low ORFs.

Proteomics

9

5303

5308

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#