#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite


Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult.


Vyšlo v časopise: Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001279
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001279

Souhrn

Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult.


Zdroje

1. DuttaS

LeeSY

BatchelorAH

LanarDE

2007 Structural basis of antigenic escape of a malaria vaccine candidate. Proc Natl Acad Sci U S A 104 12488 12493

2. MelbyP

YangJ

ZhaoW

PerezL

ChengJ

2001 Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 69 4719 4725

3. GodfrayHC

BeddingtonJR

CruteIR

HaddadL

LawrenceD

2010 Food security: the challenge of feeding 9 billion people. Science 327 812 818

4. PerryB

RandolphT

McDermottJ

SonesK

ThorntonP

2002 Investing in animal health research to alleviate poverty. ILRI (International Livestock Research Institute), Nairobi, Kenya

5. ShirleyMW

SmithAL

TomleyFM

2005 The biology of avian Eimeria with an emphasis on their control by vaccination. Adv Parasitol 60 285 330

6. BlakeDP

HeskethP

ArcherA

CarrollF

SmithAL

2004 Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entree to the identification of protective antigens. Mol Biochem Parasitol 138 143 152

7. MartinelliA

CheesmanS

HuntP

CulletonR

RazaA

2005 A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proc Natl Acad Sci U S A 102 814 819

8. Maynard SmithJ

HaighJ

1974 The hitch-hiking effect of a favorable gene. Genet Res 23 23 35

9. ShirleyM

HarveyD

2000 A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Res 10 1587 1593

10. ClarkJD

BillingtonK

BumsteadJM

OakesRD

SoonPE

2008 A toolbox facilitating stable transfection of Eimeria species. Mol Biochem Parasitol 162 77 86

11. RichieT

SaulA

2002 Progress and challenges for malaria vaccines. Nature 415 694 701

12. ZhangH

NishikawaY

YamagishiJ

ZhouJ

IkeharaY

2010 Neospora caninum: Application of apical membrane antigen 1 encapsulated in the oligomannose-coated liposomes for reduction of offspring mortality from infection in BALB/c mice. Exp Parasitol 125 130 136

13. KockenCH

van der WelAM

DubbeldMA

NarumDL

van de RijkeFM

1998 Precise timing of expression of a Plasmodium falciparum-derived transgene in Plasmodium berghei is a critical determinant of subsequent subcellular localization. J Biol Chem 273 15119 15124

14. DuttaS

DlugoszLS

ClaytonJW

PoolCD

HaynesJD

2010 Alanine mutagenesis of the primary antigenic escape residue cluster, c1, of apical membrane antigen 1. Infect Immun 78 661 671

15. MuJ

MyersRA

JiangH

LiuS

RicklefsS

2010 Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet 42 268 271

16. LeeEC

YuD

Martinez de VelascoJ

TessarolloL

SwingDA

2001 A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73 56 65

17. KallL

KroghA

SonnhammerEL

2004 A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338 1027 1036

18. BendtsenJD

NielsenH

von HeijneG

BrunakS

2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795

19. LetunicI

DoerksT

BorkP

2009 SMART 6: recent updates and new developments. Nucleic Acids Res 37 D229 232

20. AltschulSF

MaddenTL

SchafferAA

ZhangJ

ZhangZ

1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402

21. CheesmanS

O'MahonyE

PattaradilokratS

DegnanK

KnottS

2010 A single parasite gene determines strain-specific protective immunity against malaria: the role of the merozoite surface protein I. Int J Parasitol 40 951 961

22. BlakeDP

SmithAL

ShirleyMW

2003 Amplified fragment length polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites. Parasitol Res 90 473 475

23. BlakeDP

HeskethP

ArcherA

ShirleyMW

SmithAL

2006 Eimeria maxima: the influence of host genotype on parasite reproduction as revealed by quantitative real-time PCR. Int J Parasitol 36 97 105

24. EckertJ

BraunR

ShirleyM

CoudertP

1995 Guidelines on techniques in coccidiosis research Brussels, Luxembourg European Commission

25. OsoegawaK

WoonPY

ZhaoB

FrengenE

TatenoM

1998 An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52 1 8

26. ShirleyMW

KempDJ

PallisterJ

ProwseSJ

1990 A molecular karyotype of Eimeria tenella as revealed by contour-clamped homogeneous electric field gel electrophoresis. Mol Biochem Parasitol 38 169 173

27. VosP

HogersR

BleekerM

ReijansM

van de LeeT

1995 AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 4407 4414

28. RozenS

SkaletskyH

2000 Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132 365 386

29. ThompsonJD

GibsonTJ

PlewniakF

JeanmouginF

HigginsDG

1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

30. ThomasonL

CourtDL

BubunenkoM

CostantinoN

WilsonH

2007 Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol Chapter 1 Unit 1. 16

31. SambrookJ

RussellD

2001 Molecular cloning: a laboratory manual New York, USA Cold Spring Harbour Laboratory Press

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#