Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient Integration into Stable Nucleosomes
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.
Vyšlo v časopise:
Functional Coupling between HIV-1 Integrase and the SWI/SNF Chromatin Remodeling Complex for Efficient Integration into Stable Nucleosomes. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001280
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001280
Souhrn
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.
Zdroje
1. BushmanFD
CraigieR
1991
Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA.
Proc Natl Acad Sci U S A
88
1339
1343
2. ShermanPA
FyfeJA
1990
Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity.
Proc Natl Acad Sci U S A
87
5119
5123
3. EngelmanA
MizuuchiK
CraigieR
1991
HIV-1 DNA Integration: Mechanism of viral DNA Cleavage and strand transfer.
Cell
67
1211
1221
4. HindmarshP
LeisJ
1999
Retroviral DNA integration.
Microbiol Mol Biol Rev
63
836
843, table of contents
5. SinhaS
PursleyMH
GrandgenettDP
2002
Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors.
J Virol
76
3105
3113
6. SinhaS
GrandgenettDP
2005
Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells.
J Virol
79
8208
8216
7. BowermanB
BrownPO
BishopJM
VarmusHE
1989
A nucleoprotein complex mediates the integration of retroviral DNA.
Genes Dev
3
469
478
8. PryciakPM
SilA
VarmusHE
1992
Retroviral integration into minichromosomes in vitro.
Embo J
11
291
303
9. PryciakMP
VarmusEH
1992
Nucleosomes, DNA-Binding Proteins, and DNA Sequence Modulate Retroviral Integration Target Site Selection.
Cell
69
769
780
10. PrussD
ReevesR
BushmanFD
WolffeAP
1994
The influence of DNA and nucleosome structure on integration events directed by HIV integrase.
J Biol Chem
269
25031
25041
11. PrussD
BushmanFD
WolffeAP
1994
Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core.
Proc Natl Acad Sci U S A
91
5913
5917
12. WangGP
CiuffiA
LeipzigJ
BerryCC
BushmanFD
2007
HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications.
Genome Res
17
1186
1194
13. SchroderAR
ShinnP
ChenH
BerryC
EckerJR
2002
HIV-1 integration in the human genome favors active genes and local hotspots.
Cell
110
521
529
14. MitchellRS
BeitzelBF
SchroderAR
ShinnP
ChenH
2004
Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences.
PLoS Biol
2
E234
15. ShunMC
RaghavendraNK
VandegraaffN
DaigleJE
HughesS
2007
LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration.
Genes Dev
21
1767
1778
16. WuY
MarshJW
2003
Early transcription from nonintegrated DNA in human immunodeficiency virus infection.
J Virol
77
10376
10382
17. TaganovKD
CuestaI
DanielR
CirilloLA
KatzRA
2004
Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro.
J Virol
78
5848
5855
18. LewinskiMK
YamashitaM
EmermanM
CiuffiA
MarshallH
2006
Retroviral DNA integration: viral and cellular determinants of target-site selection.
PLoS Pathog
2
e60
19. BushmanF
LewinskiM
CiuffiA
BarrS
LeipzigJ
2005
Genome-wide analysis of retroviral DNA integration.
Nat Rev Microbiol
3
848
858
20. BushmanFD
HoffmannC
RonenK
MalaniN
MinkahN
2008
Massively parallel pyrosequencing in HIV research.
Aids
22
1411
1415
21. KalpanaGV
MarmonS
WangW
CrabtreeGR
GoffSP
1994
Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5.
Science
266
2002
2006
22. SorinM
YungE
WuX
KalpanaGV
2006
HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.
Retrovirology
3
56
23. MarounM
DelelisO
CoadouG
BaderT
SegeralE
2006
Inhibition of early steps of HIV-1 replication by SNF5/Ini1.
J Biol Chem
281
22736
22743
24. YungE
SorinM
PalA
CraigE
MorozovA
2001
Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1.
Nat Med
7
920
926
25. EatonMJ
FrydelBR
LopezTL
NieXT
HuangJ
2000
Generation and initial characterization of conditionally immortalized chromaffin cells.
Journal of Cellular Biochemistry
79
38
57
26. EmilianiS
MousnierA
BusschotsK
MarounM
Van MaeleB
2005
Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication.
J Biol Chem
280
25517
25523
27. LlanoM
SaenzDT
MeehanA
WongthidaP
PeretzM
2006
An essential role for LEDGF/p75 in HIV integration.
Science
314
461
464
28. CiuffiA
LlanoM
PoeschlaE
HoffmannC
LeipzigJ
2005
A role for LEDGF/p75 in targeting HIV DNA integration.
Nat Med
11
1287
1289
29. MarshallHM
RonenK
BerryC
LlanoM
SutherlandH
2007
Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting.
PLoS One
2
e1340
30. FerrisAL
WuX
HughesCM
StewartC
SmithSJ
2010
Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration.
Proc Natl Acad Sci U SA
31. MeehanAM
SaenzDT
MorrisonJH
Garcia-RiveraJA
PeretzM
2009
LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors.
PLoS Pathog
5
e1000522
32. SilversRM
SmithJA
SchowalterM
LitwinS
LiangZ
2010
Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein.
Hum Gene Ther
21
337
349
33. GijsbersR
RonenK
VetsS
MalaniN
De RijckJ
2010
LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin.
Mol Ther
18
552
560
34. BotbolY
RaghavendraNK
RahmanS
EngelmanA
LavigneM
2008
Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro.
Nucleic Acids Res
36
1237
1246
35. LesbatsP
MetifiotM
CalmelsC
BaranovaS
NevinskyG
2008
In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state.
Nucleic Acids Res
36
7043
7058
36. IkedaK
StegerDJ
EberharterA
WorkmanJL
1999
Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes.
Mol Cell Biol
19
855
863
37. HassanAH
NeelyKE
WorkmanJL
2001
Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes.
Cell
104
817
827
38. LavigneM
FrancisNJ
KingIF
KingstonRE
2004
Propagation of silencing; recruitment and repression of naive chromatin in trans by polycomb repressed chromatin.
Mol Cell
13
415
425
39. MilaniP
ChevereauG
VaillantC
AuditB
Haftek-TerreauZ
2009
Nucleosome positioning by genomic excluding-energy barriers.
Proc Natl Acad Sci U S A
106
22257
22262
40. VaillantC
AuditB
ArneodoA
2007
Experiments confirm the influence of genome long-range correlations on nucleosome positioning.
Phys Rev Lett
99
218103
41. LusserA
KadonagaJT
2004
Strategies for the reconstitution of chromatin.
Nat Methods
1
19
26
42. ClapierCR
CairnsBR
2009
The biology of chromatin remodeling complexes.
Annu Rev Biochem
78
273
304
43. YungE
SorinM
WangEJ
PerumalS
OttD
2004
Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance.
J Virol
78
2222
2231
44. TurelliP
DoucasV
CraigE
MangeatB
KlagesN
2001
Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication.
Mol Cell
7
1245
1254
45. ParissiV
CaumontA
Richard de SoultraitV
DupontCH
PichuantesS
2000
Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast.
Gene
247
129
136
46. SifS
StukenbergPT
KirschnerMW
KingstonRE
1998
Mitotic inactivation of a human SWI/SNF chromatin remodeling complex.
Genes Dev
12
2842
2851
47. SifS
SaurinAJ
ImbalzanoAN
KingstonRE
2001
Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes.
Genes Dev
15
603
618
48. NarlikarGJ
FanHY
KingstonRE
2002
Cooperation between complexes that regulate chromatin structure and transcription.
Cell
108
475
487
49. AalfsJD
NarlikarGJ
KingstonRE
2001
Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H.
J Biol Chem
276
34270
34278
50. FanHY
HeX
KingstonRE
NarlikarGJ
2003
Distinct strategies to make nucleosomal DNA accessible.
Mol Cell
11
1311
1322
51. FaureA
CalmelsC
DesjobertC
CastroviejoM
Caumont-SarcosA
2005
HIV-1 integrase crosslinked oligomers are active in vitro.
Nucleic Acids Res
33
977
986
52. PryciakPM
MüllerH-P
VarmusHE
1992
Simian virus 40 minichromosomes as targets for retroviral integration in vivo.
Proc Natl Acad Sci USA
89
9237
9241
53. HareS
GuptaSS
ValkovE
EngelmanA
CherepanovP
2010
Retroviral intasome assembly and inhibition of DNA strand transfer.
Nature
54. CherepanovP
MaertensG
ProostP
DevreeseB
Van BeeumenJ
2003
HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells.
J Biol Chem
278
372
381
55. MaertensG
CherepanovP
PluymersW
BusschotsK
De ClercqE
2003
LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells.
J Biol Chem
278
33528
33539
56. Van MaeleB
BusschotsK
VandekerckhoveL
ChristF
DebyserZ
2006
Cellular co-factors of HIV-1 integration.
Trends Biochem Sci
31
98
105
57. StudamireB
GoffSP
2008
Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors.
Retrovirology
5
48
58. DasS
CanoJ
KalpanaGV
2009
Multimerization and DNA binding properties of INI1/hSNF5 and its functional significance.
J Biol Chem
284
19903
19914
59. FieldY
Fondufe-MittendorfY
MooreIK
MieczkowskiP
KaplanN
2009
Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization.
Nat Genet
41
438
445
60. SegalE
Fondufe-MittendorfY
ChenL
ThastromA
FieldY
2006
A genomic code for nucleosome positioning.
Nature
442
772
778
61. TilloD
HughesTR
2009
G+C content dominates intrinsic nucleosome occupancy.
BMC Bioinformatics
10
442
62. KirchnerJ
SandmeyerSB
1996
Ty3 integrase mutants defective in reverse transcription or 3′-end processing of extrachromosomal Ty3 DNA.
J Virol
70
4737
4747
63. BachmanN
GelbartME
TsukiyamaT
BoekeJD
2005
TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs.
Genes Dev
19
955
964
64. GelbartME
BachmanN
DelrowJ
BoekeJD
TsukiyamaT
2005
Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant.
Genes Dev
19
942
954
65. DignamJD
MartinPL
ShastryBS
RoederRG
1983
Eukaryotic gene transcription with purified components.
Methods Enzymol
101
582
598
66. PhelanML
SifS
NarlikarGJ
KingstonRE
1999
Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits.
Mol Cell
3
247
253
67. WorkmanJL
TaylorIC
KingstonRE
RoederRG
1991
Control of class II gene transcription during in vitro nucleosome assembly.
Methods Cell Biol
35
419
447
68. MieleV
VaillantC
d'Aubenton-CarafaY
ThermesC
GrangeT
2008
DNA physical properties determine nucleosome occupancy from yeast to fly.
Nucleic Acids Res
36
3746
3756
69. LogieC
PetersonCL
1997
Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays.
Embo J
16
6772
6782
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 2
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite
- Type I Interferon Signaling Regulates Ly6C Monocytes and Neutrophils during Acute Viral Pneumonia in Mice
- Infections in Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction
- The ESCRT-0 Component HRS is Required for HIV-1 Vpu-Mediated BST-2/Tetherin Down-Regulation