Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity
article has not abstract
Vyšlo v časopise:
Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003760
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003760
Souhrn
article has not abstract
Zdroje
1. DrostenC, GuntherS, PreiserW, van der WerfS, BrodtHR, et al. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976.
2. KsiazekTG, ErdmanD, GoldsmithCS, ZakiSR, PeretT, et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 1953–1966.
3. ZakiAM, van BoheemenS, BestebroerTM, OsterhausAD, FouchierRA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367: 1814–1820.
4. DomingoE, SheldonJ, PeralesC (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76: 159–216.
5. MalpicaJM, FraileA, MorenoI, ObiesCI, DrakeJW, et al. (2002) The rate and character of spontaneous mutation in an RNA virus. Genetics 162: 1505–1511.
6. DrakeJW, HollandJJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96: 13910–13913.
7. GraciJD, GnadigNF, GalarragaJE, CastroC, VignuzziM, et al. (2012) Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis. J Virol 86: 2869–2873.
8. LauringAS, FrydmanJ, AndinoR (2013) The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11: 327–336.
9. MinskaiaE, HertzigT, GorbalenyaAE, CampanacciV, CambillauC, et al. (2006) Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103: 5108–5113.
10. ZuoY, DeutscherMP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29: 1017–1026.
11. EckerleLD, BeckerMM, HalpinRA, LiK, VenterE, et al. (2010) Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 6: e1000896 doi:10.1371/journal.ppat.1000896
12. EckerleLD, LuX, SperrySM, ChoiL, DenisonMR (2007) High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol 81: 12135–12144.
13. GrahamRL, BeckerMM, EckerleLD, BollesM, DenisonMR, et al. (2012) A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18: 1820–1826.
14. BouvetM, ImbertI, SubissiL, GluaisL, CanardB, et al. (2012) RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci U S A 109: 9372–9377.
15. JohnsonA, O'DonnellM (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74: 283–315.
16. GnadigNF, BeaucourtS, CampagnolaG, BorderiaAV, Sanz-RamosM, et al. (2012) Coxsackievirus B3 mutator strains are attenuated in vivo. Proc Natl Acad Sci U S A 109: E2294–2303.
17. CoffeyLL, BeeharryY, BorderiaAV, BlancH, VignuzziM (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 108: 16038–16043.
18. VignuzziM, StoneJK, ArnoldJJ, CameronCE, AndinoR (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348.
19. PfeifferJK, KirkegaardK (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A 100: 7289–7294.
20. DonaldsonEF, SimsAC, GrahamRL, DenisonMR, BaricRS (2007) Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis. J Virol 81: 6356–6368.
21. DonaldsonEF, GrahamRL, SimsAC, DenisonMR, BaricRS (2007) Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 81: 7086–7098.
22. JosephJS, SaikatenduKS, SubramanianV, NeumanBW, BroounA, et al. (2006) Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol 80: 7894–7901.
23. Studwell-VaughanPS, O'DonnellM (1993) DNA polymerase III accessory proteins. V. Theta encoded by holE. J Biol Chem 268: 11785–11791.
24. Taft-BenzSA, SchaaperRM (2004) The theta subunit of Escherichia coli DNA polymerase III: a role in stabilizing the epsilon proofreading subunit. J Bacteriol 186: 2774–2780.
25. EgloffMP, FerronF, CampanacciV, LonghiS, RancurelC, et al. (2004) The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci U S A 101: 3792–3796.
26. SeybertA, HegyiA, SiddellSG, ZiebuhrJ (2000) The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6: 1056–1068.
27. SeybertA, ZiebuhrJ (2001) Guanosine triphosphatase activity of the human coronavirus helicase. Adv Exp Med Biol 494: 255–260.
28. ImbertI, GuillemotJC, BourhisJM, BussettaC, CoutardB, et al. (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25: 4933–4942.
29. ZhaiY, SunF, LiX, PangH, XuX, et al. (2005) Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 12: 980–986.
30. te VelthuisAJ, van den WormSH, SnijderEJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40: 1737–1747.
31. PeralesC, MartinV, DomingoE (2011) Lethal mutagenesis of viruses. Curr Opin Virol 1: 419–422.
32. StockmanLJ, BellamyR, GarnerP (2006) SARS: systematic review of treatment effects. PLoS Med 3: e343 doi:10.1371/journal.pmed.0030343
33. BarnardDL, DayCW, BaileyK, HeinerM, MontgomeryR, et al. (2006) Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral Res 71: 53–63.
34. SmithEC, BlancH, VignuzziM, DenisonMR (2013) Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog 9: e1003565 doi:10.1371/journal.ppat.1003565
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 12
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology
- Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4 T Cells
- Host Defense via Symbiosis in
- Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity