Identification of the Virulence Landscape Essential for Invasion of the Human Colon
Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene expression changes related to virulent (i.e. HM1:IMSS) and non-virulent (i.e. Rahman) strains when they are in contact with the human colon. Transcriptome comparisons between the two strains, both in culture conditions and upon contact with human colon explants, provide a global view of gene expression changes that might contribute to the observed phenotypic differences. The most remarkable feature of the virulent phenotype resides in the up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated residues. Consequently, inhibition of gene expression by RNA interference of a glycoside hydrolase (β-amylase absent from humans) abolishes mucus depletion and tissue invasion by HM1:IMSS. In summary, our data suggest a potential role of carbohydrate metabolism in colon invasion by virulent E. histolytica.
Vyšlo v časopise:
Identification of the Virulence Landscape Essential for Invasion of the Human Colon. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003824
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003824
Souhrn
Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene expression changes related to virulent (i.e. HM1:IMSS) and non-virulent (i.e. Rahman) strains when they are in contact with the human colon. Transcriptome comparisons between the two strains, both in culture conditions and upon contact with human colon explants, provide a global view of gene expression changes that might contribute to the observed phenotypic differences. The most remarkable feature of the virulent phenotype resides in the up-regulation of genes implicated in carbohydrate metabolism and processing of glycosylated residues. Consequently, inhibition of gene expression by RNA interference of a glycoside hydrolase (β-amylase absent from humans) abolishes mucus depletion and tissue invasion by HM1:IMSS. In summary, our data suggest a potential role of carbohydrate metabolism in colon invasion by virulent E. histolytica.
Zdroje
1. LarssonJM, KarlssonH, SjovallH, HanssonGC (2009) A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19: 756–766.
2. QinJ, LiR, RaesJ, ArumugamM, BurgdorfKS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
3. SonnenburgJL, XuJ, LeipDD, ChenCH, WestoverBP, et al. (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307: 1955–1959.
4. Who (1997) WHO/PAHO/UNESCO Report of a consultation of experts on amoebiasis. WHO Weekly Epidemiol Rec 72: 97–100.
5. BansalD, AveP, KerneisS, FrileuxP, BocheO, et al. (2009) An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis 3: e551.
6. TsutsumiV, Mena-LopezR, Anaya-VelazquezF, Martinez-PalomoA (1984) Cellular bases of experimental amebic liver abscess formation. Am J Pathol 117: 81–91.
7. MatternCF, KeisterDB, CasparPA (1978) Experimental amebiasis. III. A rapid in vitro assay for virulence of Entamoeba histolytica. Am J Trop Med Hyg 27: 882–887.
8. SomI, AzamA, BhattacharyaA, BhattacharyaS (2000) Inter- and intra-strain variation in the 5.8S ribosomal RNA and internal transcribed spacer sequences of Entamoeba histolytica and comparison with Entamoeba dispar, Entamoeba moshkovskii and Entamoeba invadens. Int J Parasitol 30: 723–728.
9. AnkriS, Padilla-VacaF, StolarskyT, KooleL, KatzU, et al. (1999) Antisense inhibition of expression of the light subunit (35 kDa) of the Gal/GalNac lectin complex inhibits Entamoeba histolytica virulence. Mol Microbiol 33: 327–337.
10. DvorakJA, KobayashiS, NozakiT, TakeuchiT, MatsubaraC (2003) Induction of permeability changes and death of vertebrate cells is modulated by the virulence of Entamoeba spp. isolates. Parasitol Int 52: 169–173.
11. DavisPH, ZhangX, GuoJ, TownsendRR, StanleySLJr (2006) Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol 61: 1523–1532.
12. ShahPH, MacFarlaneRC, BhattacharyaD, MateseJC, DemeterJ, et al. (2005) Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. Eukaryot Cell 4: 504–515.
13. MoodyS, BeckerS, NuchamowitzY, MirelmanD (1997) Virulent and avirulent Entamoeba histolytica and E. dispar differ in their cell surface phosphorylated glycolipids. Parasitology 114(Pt 2): 95–104.
14. DavisPH, SchulzeJ, StanleySLJr (2007) Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. Mol Biochem Parasitol 151: 118–128.
15. MacFarlaneRC, SinghU (2007) Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. Eukaryot Cell 6: 2139–2146.
16. ThibeauxR, DufourA, RouxP, BernierM, BaglinAC, et al. (2012) Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon. Cell Microbiol 14: 609–621.
17. Santi-RoccaJ, SmithS, WeberC, PinedaE, HonCC, et al. (2012) Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS One 7: e31777.
18. Smyth GK (2005) Limma: linear models for microarray data.. SpringerNew York: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. 397–422 p.
19. BruchhausI, LoftusBJ, HallN, TannichE (2003) The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. Eukaryot Cell 2: 501–509.
20. SoupeneE, KuypersFA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood) 233: 507–521.
21. FaustDM, GuillenN (2012) Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect
22. MenesesE, CardenasH, ZarateS, BriebaLG, OrozcoE, et al. (2010) The R2R3 Myb protein family in Entamoeba histolytica. Gene 455: 32–42.
23. PruferK, MuetzelB, DoHH, WeissG, KhaitovichP, et al. (2007) FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8: 41.
24. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
25. OkudaS, YamadaT, HamajimaM, ItohM, KatayamaT, et al. (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36: W423–426.
26. HirataA, AdachiM, SekineA, KangYN, UtsumiS, et al. (2004) Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum. J Biol Chem 279: 7287–7295.
27. HonCC, WeberC, SismeiroO, ProuxC, KouteroM, et al. (2013) Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res 41: 1936–1952.
28. SolisCF, Santi-RoccaJ, PerdomoD, WeberC, GuillenN (2009) Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression. PLoS One 4: e8424.
29. HaqueR, MondalD, DuggalP, KabirM, RoyS, et al. (2006) Entamoeba histolytica infection in children and protection from subsequent amebiasis. Infect Immun 74: 904–909.
30. GilchristCA, PetriWAJr (2009) Using differential gene expression to study Entamoeba histolytica pathogenesis. Trends Parasitol 25: 124–131.
31. GilchristCA, HouptE, TrapaidzeN, FeiZ, CrastaO, et al. (2006) Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147: 163–176.
32. BillerL, DavisPH, TillackM, MatthiesenJ, LotterH, et al. (2010) Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. BMC Genomics 11: 63.
33. TovyA, HertzR, Siman-TovR, SyanS, FaustD, et al. (2011) Glucose starvation boosts Entamoeba histolytica virulence. PLoS Negl Trop Dis 5: e1247.
34. MoncadaD, KellerK, ChadeeK (2005) Entamoeba histolytica-secreted products degrade colonic mucin oligosaccharides. Infect Immun 73: 3790–3793.
35. MoncadaD, KellerK, ChadeeK (2003) Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 71: 838–844.
36. LidellME, MoncadaDM, ChadeeK, HanssonGC (2006) Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci U S A 103: 9298–9303.
37. DiamondLS, HarlowDR, CunnickCC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72: 431–432.
38. EskelundV (1957) Mucin staining with Alcian blue. Acta Pathol Microbiol Scand 40: 107–109.
39. DunnO (1961) Multiple Comparisons Among Means. J Am Stat Assoc 56: 52–64.
40. AurrecoecheaC, BarretoA, BrestelliJ, BrunkBP, CalerEV, et al. (2011) AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species. Nucleic Acids Res 39: D612–619.
41. WuS, ZhangY (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35: 3375–3382.
42. Santi-RoccaJ, WeberC, GuigonG, SismeiroO, CoppeeJY, et al. (2008) The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cell Microbiol 10: 202–217.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 12
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology
- Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4 T Cells
- Host Defense via Symbiosis in
- Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity