Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.
Vyšlo v časopise:
Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages. PLoS Pathog 9(12): e32767. doi:10.1371/journal.ppat.1003785
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1003785
Souhrn
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.
Zdroje
1. PappasG, AkritidisN, BosilkovskiM, TsianosE (2005) Brucellosis. N Engl J Med 352: 2325–2336.
2. PappasG, PapadimitriouP, AkritidisN, ChristouL, TsianosEV (2006) The new global map of human brucellosis. Lancet Infect Dis 6: 91–99.
3. AtluriVL, XavierMN, de JongMF, den HartighAB, TsolisRE (2011) Interactions of the human pathogenic Brucella species with their hosts. Annu Rev of Microbiol 65: 523–541.
4. LapaqueN, MoriyonI, MorenoE, GorvelJP (2005) Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol 8: 60–66.
5. MartirosyanA, MorenoE, GorvelJP (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240: 211–234.
6. KimS, WataraiM, SuzukiH, MakinoS, KodamaT, et al. (2004) Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb Pathog 37: 11–19.
7. CelliJ, de ChastellierC, FranchiniDM, Pizarro-CerdaJ, MorenoE, et al. (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198: 545–556.
8. FugierE, SalcedoSP, de ChastellierC, PophillatM, MullerA, et al. (2009) The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 5: e1000487.
9. CelliJ, SalcedoSP, GorvelJP (2005) Brucella coopts the small GTPase Sar1 for intracellular replication. Proc Natl Acad Sci U S A 102: 1673–1678.
10. BoschiroliML, Ouahrani-BettacheS, FoulongneV, Michaux-CharachonS, BourgG, et al. (2002) The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 99: 1544–1549.
11. SchroderM, KaufmanRJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74: 739–789.
12. HetzC, GlimcherLH (2009) Fine-tuning of the unfolded protein response: Assembling the IRE1alpha interactome. Mol Cell 35: 551–561.
13. QinQM, PeiJ, AnconaV, ShawBD, FichtTA, et al. (2008) RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 4: e1000110.
14. OgataM, HinoS, SaitoA, MorikawaK, KondoS, et al. (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220–9231.
15. Pizarro-CerdaJ, MeresseS, PartonRG, van der GootG, Sola-LandaA, et al. (1998) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66: 5711–5724.
16. GuoF, ZhangH, ChenC, HuS, WangY, et al. (2012) Autophagy favors Brucella melitensis survival in infected macrophages. Cell Mol Biol Lett 17: 249–57.
17. StarrT, ChildR, WehrlyTD, HansenB, HwangS, et al. (2012) Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11: 33–45.
18. Pizarro-CerdaJ, MorenoE, SanguedolceV, MegeJL, GorvelJP (1998) Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect Immun 66: 2387–2392.
19. SeimonTA, KimMJ, BlumenthalA, KooJ, EhrtS, et al. (2010) Induction of ER stress in macrophages of tuberculosis granulomas. PLoS One 5: e12772.
20. MartinonF, ChenX, LeeAH, GlimcherLH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11: 411–8.
21. PillichH, LooseM, ZimmerKP, ChakrabortyT (2012) Activation of the unfolded protein response by Listeria monocytogenes. Cell Microbiol 14: 949–964.
22. HardingHP, NovoaI, ZhangY, ZengH, WekR, et al. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6: 1099–1108.
23. LeeAH, IwakoshiNN, GlimcherLH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23: 7448–7459.
24. YamamotoK, SatoT, MatsuiT, SatoM, OkadaT, et al. (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13: 365–376.
25. CalfonM, ZengH, UranoF, TillJH, HubbardSR, et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415: 92–96.
26. WooCW, CuiD, ArellanoJ, DorweilerB, HardingH, et al. (2009) Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 11: 1473–1480.
27. OliveiraSC, de AlmeidaLA, CarvalhoNB, OliveiraFS, LacerdaTL (2011) Update on the role of innate immune receptors during Brucella abortus infection. Vet Immunol Immunopathol 148: 129–35.
28. RajashekaraG, GloverDA, KreppsM, SplitterGA (2005) Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol 7: 1459–1473.
29. SalcedoSP, MarchesiniMI, LelouardH, FugierE, JollyG, et al. (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4: e21.
30. RadhakrishnanGK, YuQ, HarmsJS, SplitterGA (2009) Brucella TIR Domain-containing Protein Mimics Properties of the Toll-like Receptor Adaptor Protein TIRAP. J Biol Chem 284: 9892–9898.
31. RadhakrishnanGK, HarmsJS, SplitterGA (2011) Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis. The Biochem J 439: 79–83.
32. WozniakMJ, BolaB, BrownhillK, YangYC, LevakovaV, et al. (2009) Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells. J Cell Sci 122: 1979–1989.
33. WangJ, YinY, HuaH, LiM, LuoT, et al. (2009) Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response. J Cell Mol Med 13: 3888–3897.
34. LiaoPC, TanSK, LieuCH, JungHK (2008) Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem 104: 1509–1523.
35. WebsterDR (2002) Microtubules in cardiac toxicity and disease. Cardiovasc Toxicol 2: 75–89.
36. CitterioC, VichiA, Pacheco-RodriguezG, AponteAM, MossJ, et al. (2008) Unfolded protein response and cell death after depletion of brefeldin A-inhibited guanine nucleotide-exchange protein GBF1. Proc Natl Acad Sci U S A 105: 2877–2882.
37. ScianR, BarrionuevoP, FossatiCA, GiambartolomeiGH, DelpinoMV (2012) Brucella abortus invasion of osteoblasts inhibits bone formation. Infect Immun 80: 2333–2345.
38. LeclerqS, HarmsJS, RosinhaGM, AzevedoV, OliveiraSC (2002) Induction of a th1-type of immune response but not protective immunity by intramuscular DNA immunisation with Brucella abortus GroEL heat-shock gene. J MedMicrobiol 51: 20–26.
39. ArenasGN, StaskevichAS, AballayA, MayorgaLS (2000) Intracellular trafficking of Brucella abortus in J774 macrophages. Infect Immun 68: 4255–4263.
40. de JongMF, StarrT, WinterMG, den HartighAB, ChildR, et al. (2013) Sensing of Bacterial Type IV Secretion via the Unfolded Protein Response. MBio 4: e00418–12.
41. HardingHP, ZhangY, ZengH, NovoaI, LuPD, et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619–633.
42. MurrayJI, WhitfieldML, TrinkleinND, MyersRM, BrownPO, et al. (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15: 2361–2374.
43. DuenasAI, OrdunaA, CrespoMS, Garcia-RodriguezC (2004) Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS. Int Immunol 16: 1467–1475.
44. RajashekaraG, CovertJ, PetersenE, EskraL, SplitterG (2008) Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands. J Bacteriol 190: 6243–6252.
45. EmadaliA, NguyenDT, RochonC, TzimasGN, MetrakosPP, et al. (2005) Distinct endoplasmic reticulum stress responses are triggered during human liver transplantation. J Pathol 207: 111–118.
46. TardifKD, MoriK, KaufmanRJ, SiddiquiA (2004) Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem 279: 17158–17164.
47. HeldensL, HensenSM, OnnekinkC, van GenesenST, DirksRP, et al. (2011) An atypical unfolded protein response in heat shocked cells. PLoS One 6: e23512.
48. PenaJ, HarrisE (2011) Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286: 14226–14236.
49. EnginF, HotamisligilGS (2010) Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 12 Suppl 2: 108–115.
50. KarsM, YangL, GregorMF, MohammedBS, PietkaTA, et al. (2010) Tauroursodeoxycholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59: 1899–1905.
51. SmithJA, TurnerMJ, DeLayML, KlenkEI, SowdersDP, et al. (2008) Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol 38: 1194–1203.
52. HasnainSZ, LourieR, DasI, ChenAC, McGuckinMA (2012) The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol 90: 260–270.
53. WangS, KaufmanRJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197: 857–67.
54. ButlerNS, NolzJC, HartyJT (2011) Immunologic considerations for generating memory CD8 T cells through vaccination. Cell Microbiol 13: 925–933.
55. RoyCR, SalcedoSP, GorvelJP (2006) Pathogen-endoplasmic-reticulum interactions: in through the out door. Nat Rev Immunol 6: 136–147.
56. SeleemMN, JainN, AlqublanH, VemulapalliR, BoyleSM (2008) SriranganathanN (2008) Activity of native vs. synthetic promoters in Brucella. FEMS Microbiol Lett 288: 211–215.
57. CaiWF, PritchardT, FloreaS, LamCK, HanP, et al. (2012) Ablation of junctin or triadin is associated with increased cardiac injury following ischaemia/reperfusion. Cardiovasc Res 94: 333–341.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2013 Číslo 12
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Influence of Mast Cells on Dengue Protective Immunity and Immune Pathology
- Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4 T Cells
- Host Defense via Symbiosis in
- Coronaviruses as DNA Wannabes: A New Model for the Regulation of RNA Virus Replication Fidelity