#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Thyroid cancer in children and adolescents and its molecular genetic background


Authors: Běla Bendlová 1;  Vlasta Sýkorová 1;  Eliška Václavíková 1;  Josef Včelák 1;  Rami Katra 2;  Pavla Sýkorová 3;  Petr Vlček 3;  Šárka Dvořáková 1
Authors‘ workplace: Oddělení molekulární endokrinologie Endokrinologického ústavu, Praha 1;  Klinika ušní, nosní a krční 2. LF UK a FN v Motole, Praha 2;  Klinika nukleární medicíny a endokrinologie 2. LF UK a FN v Motole, Praha 3
Published in: Vnitř Lék 2016; 62(Suppl 3): 40-44
Category: Reviews

Overview

Thyroid cancer is the main endocrine malignancy. Its incidence is steadily growing and what is alarming is its increase in children and adolescent population. Pediatric thyroid carcinomas differ from the adult ones in phenotype as well as in genetics. These carcinomas tend to be clinically more aggressive, with more frequent local and distant metastases. However, their long-term prognosis is better in comparison with the adult thyroid cancers. Due to the rarity of the disease, there is lack of data on genetic changes in this age group. Knowledge on the genetic background of thyroid cancer in children will help to precise diagnosis and prognosis of the disease and to personalized treatment.

Key words:
adolescents – carcinoma – gene – genetics – children – mutation – next generation sequencing – thyroid


Sources

1. Greenlee RT, Hill-Harmon MB, Murray T et al. Cancer statistics, 2001. CA Cancer J Clin 2001; 51(1): 15–36. Erratum in CA Cancer J Clin 2001; 51(2): 144.

2. Dušek L, Mužík J, Kubásek M et al. Epidemiology of Malignant Tumours in the Czech Republic [online]. Masaryk University (Czech Republic): 2005. Dostupné z WWW: http://www.svod.cz. Version 7.0 (2007). [18.08.2016].

3. Miyakawa M. Radiation exposure and the risk of pediatric thyroid cancer. Clin Pediatr Endocrinol 2014; 23(3): 73–82.

4. Fridman M, Savva N, Krasko O et al. Initial presentation and late results of treatment of post-chernobyl papillary thyroid carcinoma in children and adolescents of belarus. J Clin Endocrinol Metab 2014; 99(8): 2932–2941. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2013–3131>.

5. Yamashita S, Suzuki S. Risk of thyroid cancer after the Fukushima nuclear power plant accident. Respir Investig 2013; 51(3): 128–133. Dostupné z DOI: <http://dx.doi.org/10.1016/j.resinv.2013.05.007>.

6. Cordioli MI, Moraes L, Cury AN et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer 2015; 22(6): R311- R324. Dostupné z DOI: <http://dx.doi.org/10.1530/ERC-15–0381>.

7. Nikiforov YE, Biddinger PW, Thompson LD (eds). Diagnostic Pathology and Molecular Genetics of the Thyroid. Lippincott Williams & Wilkins 2009. ISBN 978–0781774598.

8. Astl J, Chovanec M, Lukeš P et al. Thyroid carcinoma surgery in children and adolescents – 15 years experience surgery of pediatric thyroid carcinoma. Int J Pediatr Otorhinolaryngol 2014; 78(7): 990–994. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijporl.2014.03.005>.

9. Avram AM, Shulkin BL. Thyroid cancer in children. J Nucl Med 2014; 55(5): 705–707. Dostupné z DOI: <http://dx.doi.org/10.2967/jnumed.113.136077>.

10. Millar S, Bradley L, Donnelly DE et al. Familial pediatric endocrine tumors. Oncologist 2011; 16(10): 1388–1396. Dostupné z DOI: <http://dx.doi.org/10.1634/theoncologist.2011–0120>.

11. Francis G, Waguespack SG, Bauer AJ et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer The American Thyroid Association Guidelines Task Force on Pediatric Thyroid Cancer. Thyroid 2015; 25(7): 716–759. Dostupné z DOI: <http://dx.doi.org/10.1089/thy.2014.0460>.

12. Markovina S, Grigsby PW, Schwarz JK et al. Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid 2014; 24(7): 1121–1126. Dostupné z DOI: <http://dx.doi.org/10.1089/thy.2013.0297>.

13. Tran Cao HS, Johnston LE, Chang DC et al. A critical analysis of the American Joint Committee on Cancer (AJCC) staging system for differentiated thyroid carcinoma in young patients on the basis of the Surveillance, Epidemiology, and End Results (SEER) registry. Surgery 2012; 152(2): 145–151. Dostupné z DOI: <http://dx.doi.org/10.1016/j.surg.2012.02.015>.

14. Papp S, Asa SL. When thyroid carcinoma goes bad: a morphological and molecular analysis. Head Neck Pathol 2015; 9(1): 16–23. Dostupné z DOI: <http://dx.doi.org/10.1007/s12105–015–0619-z>.

15. Viola D, Valerio L, Molinaro E et al. Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr Relat Cancer 2016; 23(4): R185-R205. Dostupné z DOI: <http://dx.doi.org/10.1530/ERC-15–0555>.

16. Tavares C, Melo M, Cameselle-Teijeiro JM et al. Endocrine tumours: Genetic predictors of thyroid cancer outcome. Eur J Endocrinol 2016; 174(4): R117-R126. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-15–0605>.

17. Wu C, Schwartz JM, Brabant G et al. Molecular profiling of thyroid cancer subtypes using large-scale text mining. BMC Med Genomics 2014; 7(Suppl 3): 53. <http://dx.doi.org/10.1186/1755–8794–7-S3-S3>.

18. Nikiforova MN, Wald AI, Roy S et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 2013; 98(11): E1852-E1860. <http://dx.doi.org/10.1210/jc.2013–2292>.

19. Xing M, Alzahrani AS, Carson KA et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013; 309(14): 1493–1501. <http://dx.doi.org/10.1001/jama.2013.3190>.

20. Sykorova V, Dvorakova S, Ryska A et al. BRAFV600E Mutation in the Pathogenesis of a Large Series of Papillary Thyroid Carcinoma in Czech Republic. J Endocrinol Invest 2010; 33(5): 318–324. <http://dx.doi.org/10.3275/6722>.

21. Xing M, Alzahrani AS, Carson KA et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 2015; 33(1): 42–50. <http://dx.doi.org/10.1200/JCO.2014.56.8253>.

22. Dvorakova S, Sykorova V, Vaclavikova E et al. A 3-bp Deletion VK600–1E in the BRAF Gene Detected in a Young Woman with Papillary Thyroid Carcinoma. Endocr Pathol 2015; 26(4): 309–314. <http://dx.doi.org/10.1007/s12022–015–9387–2>.

23. Leeman-Neill RJ, Brenner AV, Little MP et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 2013; 119(10): 1792–1799. <http://dx.doi.org/10.1002/cncr.27893>.

24. Halkova T, Dvorakova S, Vaclavikova E et al. A novel RET/PTC variant detected in a pediatric patient with papillary thyroid cancer without ionization history. Hum Pathol 2015; 46(12): 1962–1969. <http://dx.doi.org/10.1016/j.humpath.2015.08.013>.

25. Armstrong MJ, Yang H, Yip L et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid 2014; 24(9): 1369–1374. <http://dx.doi.org/10.1089/thy.2014.0067>.

26. Picarsic JL, Buryk MA, Ozolek J et al. Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay. Pediatr Dev Pathol 2016; 19(2): 115–122. <http://dx.doi.org/10.2350/15–07–1667-OA.1>.

27. Prasad ML, Vyas M, Horne MJ et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016; 122(7): 1097–1107. <http://dx.doi.org/10.1002/cncr.29887>.

28. Beadling C, Wald AI, Warrick A et al. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing. J Mol Diagn 2016; 18(2): 165–175. <http://dx.doi.org/10.1016/j.jmoldx.2015.10.002>.

29. Lee SR, Jung CK, Kim TE et al. Molecular genotyping of follicular variant of papillary thyroid carcinoma correlates with diagnostic category of fine-needle aspiration cytology: values of RAS mutation testing. Thyroid 2013; 23(11): 1416–1422. <http://dx.doi.org/10.1089/thy.2012.0640>.

30. Eszlinger M, Niedziela M, Typlt E et al. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Mol Cell Endocrinol 2014; 393(1–2): 39–45. <http://dx.doi.org/10.1016/j.mce.2014.05.023>.

31. Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer 2016; 23(3): R143-R155. <http://dx.doi.org/10.1530/ERC-15–0533>.

32. Liu X, Qu S, Liu R et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 2014; 99(6): E1130-E1136. <http://dx.doi.org/10.1210/jc.2013–4048>.

33. Nikiforov YE, Carty SE, Chiosea SI et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014; 120(23): 3627–3634. Dostupné z DOI: <http://dx.doi.org/10.1002/cncr.29038>.

34. [Cancer Genome Atlas Research Network]. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159(3): 676–690. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cell.2014.09.050>.

35. Costa V, Esposito R, Pallante P et al. The “next-generation” knowledge of papillary thyroid carcinoma. Cell Cycle 2015; 14(13): 2018–2021. Dostupné z DOI: <http://dx.doi.org/10.1080/15384101.2015.1049786>.

36. Agrawal N, Jiao Y, Sausen M et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98(2): E364-E369. Dostupné z DOI: <http://DX.DOI.ORG/10.1210/jc.2012–2703>.

37. Bendlová B, Dvoráková S, Václavíková E et al. Nádory štítné žlázy a Hirschsprungova choroba: desetileté zkušenosti s molekulární genetickou diagnostikou RET proto-onkogenu. Vnitř Lék 2006; 52(10): 926–934.

38. Dvorakova S, Vaclavikova E, Duskova J et al. Exon 5 of the RET proto-oncogene: a newly detected risk exon for familial medullary thyroid carcinoma, a novel germ-line mutation Gly321Arg. J Endocrinol Invest 2005; 28(10): 905–909.

39. Sykorova V, Dvorakova S, Vcelak J et al. Search for new genetic biomarkers in poorly differentiated and anaplastic thyroid carcinomas using next generation sequencing. Anticancer Res 2015; 35(4): 2029–2036.

40. Malkin D, Nichols KE, Zelley K et al. Predisposition to pediatric and hematologic cancers: a moving target. Am Soc Clin Oncol Educ Book 2014; e44-e55. Dostupné z DOI: <http://dx.doi.org/10.14694/EdBook_AM.2014.34.e44>.

41. Wójcicka A, Kolanowska M, Jażdżewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol 2016; 174(3): R89-R98. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-15–0647>.

42. Valderrabano P, Zota VE, McIver B et al. Molecular Assays in Cytopathology for Thyroid Cancer. Cancer Control 2015; 22(2): 152–157.

43. Dvorakova S, Vaclavikova E, Sykorova V et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol 2008; 284(1–2): 21–27. Dostupné z DOI: <http://dx.doi.org/10.1016/j.mce.2007.12.016>.

44. Jindrichová S, Vcelák J, Vlcek P et al. Screening of six risk exons of the RET proto-oncogene in families with medullary thyroid carcinoma in the Czech Republic. J Endocrinol 2004; 183(2): 257–265.

45. Manwar Hussain MR, Khan A, Ali Mohamoud HS. From genes to health – challenges and opportunities. Front Pediatr 2014; 2: 12. Dostupné z DOI: <http://dx.doi.org/10.3389/fped.2014.00012>.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue Suppl 3

2016 Issue Suppl 3
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#