#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of the Regulatory Logic Controlling Pathoadaptation by the SsrA-SsrB Two-Component System


Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.


Vyšlo v časopise: Identification of the Regulatory Logic Controlling Pathoadaptation by the SsrA-SsrB Two-Component System. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000875
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000875

Souhrn

Sequence data from the past decade has laid bare the significance of horizontal gene transfer in creating genetic diversity in the bacterial world. Regulatory evolution, in which non-coding DNA is mutated to create new regulatory nodes, also contributes to this diversity to allow niche adaptation and the evolution of pathogenesis. To survive in the host environment, Salmonella enterica uses a type III secretion system and effector proteins, which are activated by the SsrA-SsrB two-component system in response to the host environment. To better understand the phenomenon of regulatory evolution in S. enterica, we defined the SsrB regulon and asked how this transcription factor interacts with the cis-regulatory region of target genes. Using ChIP-on-chip, cDNA hybridization, and comparative genomics analyses, we describe the SsrB-dependent regulon of ancestral and horizontally acquired genes. Further, we used a genetic screen and computational analyses integrating experimental data from S. enterica and sequence data from an orthologous regulatory system in the insect endosymbiont, Sodalis glossinidius, to identify the conserved yet flexible palindrome sequence that defines DNA recognition by SsrB. Mutational analysis of a representative promoter validated this palindrome as the minimal architecture needed for regulatory input by SsrB. These data provide a high-resolution map of a regulatory network and the underlying logic enabling pathogen adaptation to a host.


Zdroje

1. OchmanH

LawrenceJG

GroismanEA

2000 Lateral gene transfer and the nature of bacterial innovation. Nature 405 299 304

2. NavarreWW

PorwollikS

WangY

McClellandM

RosenH

2006 Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313 236 238

3. LucchiniS

RowleyG

GoldbergMD

HurdD

HarrisonM

2006 H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2 e81 doi:10.1371/journal.ppat.0020081

4. Prud'hommeB

GompelN

CarrollSB

2007 Emerging principles of regulatory evolution. Proc Natl Acad Sci U S A 104 Suppl 1 8605 8612

5. StoneJR

WrayGA

2001 Rapid evolution of cis-regulatory sequences via local point mutations. Mol Biol Evol 18 1764 1770

6. MayoAE

SettyY

ShavitS

ZaslaverA

AlonU

2006 Plasticity of the cis-regulatory input function of a gene. PLoS Biol 4 e45 doi:10.1371/journal.pbio.0040045

7. IsalanM

LemerleC

MichalodimitrakisK

HornC

BeltraoP

2008 Evolvability and hierarchy in rewired bacterial gene networks. Nature 452 840 845

8. PerezJC

GroismanEA

2009 Evolution of transcriptional regulatory circuits in bacteria. Cell 138 233 244

9. SheaJE

HenselM

GleesonC

HoldenDW

1996 Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93 2593 2597

10. OchmanH

SonciniFC

SolomonF

GroismanEA

1996 Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci USA 93 7800 7804

11. CornelisGR

2006 The type III secretion injectisome. Nat Rev Microbiol 4 811 825

12. GalanJE

Wolf-WatzH

2006 Protein delivery into eukaryotic cells by type III secretion machines. Nature 444 567 573

13. FassE

GroismanEA

2009 Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12 199 204

14. YoonH

McDermottJE

PorwollikS

McClellandM

HeffronF

2009 Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 5 e1000306 doi:10.1371/journal.ppat.1000306

15. RytkonenA

PohJ

GarmendiaJ

BoyleC

ThompsonA

2007 SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A 104 3502 3507

16. CoombesBK

WickhamME

LowdenMJ

BrownNF

FinlayBB

2005 Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc Natl Acad Sci U S A 102 17460 17465

17. BrownNF

VallanceBA

CoombesBK

ValdezY

CoburnBA

2005 Salmonella Pathogenicity Island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1 e32 doi:10.1371/journal.ppat.0010032

18. OchmanH

GroismanEA

1996 Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64 5410 5412

19. OsborneSE

WalthersD

TomljenovicAM

MulderDT

SilphaduangU

2009 Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function. Proc Natl Acad Sci U S A 106 3982 3987

20. CoombesBK

BrownNF

ValdezY

BrumellJH

FinlayBB

2004 Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 279 49804 49815

21. HokampK

RocheFM

AcabM

RousseauME

KuoB

2004 ArrayPipe: a flexible processing pipeline for microarray data. Nucleic Acids Res 32 W457 459

22. TatusovRL

NataleDA

GarkavtsevIV

TatusovaTA

ShankavaramUT

2001 The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29 22 28

23. McClellandM

SandersonKE

SpiethJ

CliftonSW

LatreilleP

2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856

24. DobrindtU

HochhutB

HentschelU

HackerJ

2004 Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2 414 424

25. FengX

WalthersD

OropezaR

KenneyLJ

2004 The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2. Mol Microbiol 54 823 835

26. WalthersD

CarrollRK

NavarreWW

LibbySJ

FangFC

2007 The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol Microbiol 65 477 493

27. MengX

BrodskyMH

WolfeSA

2005 A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23 988 994

28. ZwirI

ShinD

KatoA

NishinoK

LatifiT

2005 Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A 102 2862 2867

29. BaileyTL

WilliamsN

MislehC

LiWW

2006 MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34 W369 373

30. LiuXS

BrutlagDL

LiuJS

2002 An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20 835 839

31. TohH

WeissBL

PerkinSA

YamashitaA

OshimaK

2006 Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16 149 156

32. CarrollRK

LiaoX

MorganLK

CicirelliEM

LiY

2009 Structural and functional analysis of the C-terminal DNA binding domain of the Salmonella typhimurium SPI-2 response regulator SsrB. J Biol Chem 284 12008 12019

33. CoombesBK

2009 Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol 17 89 94

34. DaleC

PlagueGR

WangB

OchmanH

MoranNA

2002 Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci U S A 99 12397 12402

35. ShimadaT

IshihamaA

BusbySJ

GraingerDC

2008 The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 36 3950 3955

36. ChoBK

KnightEM

BarrettCL

PalssonBO

2008 Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18 900 910

37. MacArthurS

BrookfieldJF

2004 Expected rates and modes of evolution of enhancer sequences. Mol Biol Evol 21 1064 1073

38. SalcedoSP

HoldenDW

2003 SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 22 5003 5014

39. DeiwickJ

SalcedoSP

BoucrotE

GillilandSM

HenryT

2006 The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun 74 6965 6972

40. ShinD

LeeEJ

HuangH

GroismanEA

2006 A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314 1607 1609

41. LangilleMG

BrinkmanFS

2009 IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25 664 665

42. CrooksGE

HonG

ChandoniaJM

BrennerSE

2004 WebLogo: a sequence logo generator. Genome Res 14 1188 1190

43. UzzauS

Figueroa-BossiN

RubinoS

BossiL

2001 Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98 15264 15269

44. KrzywinskiM

ScheinJ

BirolI

ConnorsJ

GascoyneR

2009 Circos: an information aesthetic for comparative genomics. Genome Res 19 1639 1645

45. ThijsG

LescotM

MarchalK

RombautsS

De MoorB

2001 A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17 1113 1122

46. ThijsG

MarchalK

LescotM

RombautsS

De MoorB

2002 A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 9 447 464

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#