Identification and Functional Analysis of the Vision-Specific BBS3 (ARL6) Long Isoform
Bardet-Biedl Syndrome (BBS) is a heterogeneous syndromic form of retinal degeneration. We have identified a novel transcript of a known BBS gene, BBS3 (ARL6), which includes an additional exon. This transcript, BBS3L, is evolutionally conserved and is expressed predominantly in the eye, suggesting a specialized role in vision. Using antisense oligonucleotide knockdown in zebrafish, we previously demonstrated that bbs3 knockdown results in the cardinal features of BBS in zebrafish, including defects to the ciliated Kupffer's Vesicle and delayed retrograde melanosome transport. Unlike bbs3, knockdown of bbs3L does not result in Kupffer's Vesicle or melanosome transport defects, rather its knockdown leads to impaired visual function and mislocalization of the photopigment green cone opsin. Moreover, BBS3L RNA, but not BBS3 RNA, is sufficient to rescue both the vision defect as well as green opsin localization in the zebrafish retina. In order to demonstrate a role for Bbs3L function in the mammalian eye, we generated a Bbs3L-null mouse that presents with disruption of the normal photoreceptor architecture. Bbs3L-null mice lack key features of previously published Bbs-null mice, including obesity. These data demonstrate that the BBS3L transcript is required for proper retinal function and organization.
Vyšlo v časopise:
Identification and Functional Analysis of the Vision-Specific BBS3 (ARL6) Long Isoform. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000884
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000884
Souhrn
Bardet-Biedl Syndrome (BBS) is a heterogeneous syndromic form of retinal degeneration. We have identified a novel transcript of a known BBS gene, BBS3 (ARL6), which includes an additional exon. This transcript, BBS3L, is evolutionally conserved and is expressed predominantly in the eye, suggesting a specialized role in vision. Using antisense oligonucleotide knockdown in zebrafish, we previously demonstrated that bbs3 knockdown results in the cardinal features of BBS in zebrafish, including defects to the ciliated Kupffer's Vesicle and delayed retrograde melanosome transport. Unlike bbs3, knockdown of bbs3L does not result in Kupffer's Vesicle or melanosome transport defects, rather its knockdown leads to impaired visual function and mislocalization of the photopigment green cone opsin. Moreover, BBS3L RNA, but not BBS3 RNA, is sufficient to rescue both the vision defect as well as green opsin localization in the zebrafish retina. In order to demonstrate a role for Bbs3L function in the mammalian eye, we generated a Bbs3L-null mouse that presents with disruption of the normal photoreceptor architecture. Bbs3L-null mice lack key features of previously published Bbs-null mice, including obesity. These data demonstrate that the BBS3L transcript is required for proper retinal function and organization.
Zdroje
1. GreenJS
ParfreyPS
HarnettJD
FaridNR
CramerBC
1989 The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med 321 1002 1009
2. HarnettJD
GreenJS
CramerBC
JohnsonG
ChafeL
1988 The spectrum of renal disease in Laurence-Moon-Biedl syndrome. N Engl J Med 319 615 618
3. BardetG
1995 On congenital obesity syndrome with polydactyly and retinitis pigmentosa (a contribution to the study of clinical forms of hypophyseal obesity). 1920. Obes Res 3 387 399
4. BiedlA
1995 A pair of siblings with adiposo-genital dystrophy. 1922. Obes Res 3 404
5. ElbedourK
ZuckerN
ZalzsteinE
BarkiY
CarmiR
1994 Cardiac abnormalities in the Bardet-Biedl syndrome: echocardiographic studies of 22 patients. Am J Med Genet 52 164 169
6. LeysMJ
SchreinerLA
HansenRM
MayerDL
FultonAB
1988 Visual acuities and dark-adapted thresholds of children with Bardet-Biedl syndrome. Am J Ophthalmol 106 561 569
7. RiiseR
1987 Visual function in Laurence-Moon-Bardet-Biedl syndrome. A survey of 26 cases. Acta Ophthalmol Suppl 182 128 131
8. JacobsonSG
BorruatFX
ApathyPP
1990 Patterns of rod and cone dysfunction in Bardet-Biedl syndrome. Am J Ophthalmol 109 676 688
9. BealesPL
WarnerAM
HitmanGA
ThakkerR
FlinterFA
1997 Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 34 92 98
10. CarmiR
ElbedourK
StoneEM
SheffieldVC
1995 Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet 59 199 203
11. RiiseR
AndreassonS
BorgastromMK
WrightAF
TommerupN
1997 Intrafamilial variation of the phenotype in Bardet-Biedl syndrome. Br J Ophthalmol 81 378 385
12. FultonAB
HansenRM
GlynnRJ
1993 Natural course of visual functions in the Bardet-Biedl syndrome. Arch Ophthalmol 111 1500 1506
13. HeonE
WestallC
CarmiR
ElbedourK
PantonC
2005 Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet A 132A 283 287
14. MykytynK
NishimuraDY
SearbyCC
ShastriM
YenHJ
2002 Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 31 435 438
15. NishimuraDY
SearbyCC
CarmiR
ElbedourK
Van MaldergemL
2001 Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 10 865 874
16. ChiangAP
NishimuraD
SearbyC
ElbedourK
CarmiR
2004 Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet 75 475 484
17. FanY
EsmailMA
AnsleySJ
BlacqueOE
BoroevichK
2004 Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 36 989 993
18. MykytynK
BraunT
CarmiR
HaiderNB
SearbyCC
2001 Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 28 188 191
19. LiJB
GerdesJM
HaycraftCJ
FanY
TeslovichTM
2004 Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117 541 552
20. KatsanisN
BealesPL
WoodsMO
LewisRA
GreenJS
2000 Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 26 67 70
21. SlavotinekAM
StoneEM
MykytynK
HeckenlivelyJR
GreenJS
2000 Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet 26 15 16
22. BadanoJL
AnsleySJ
LeitchCC
LewisRA
LupskiJR
2003 Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet 72 650 658
23. AnsleySJ
BadanoJL
BlacqueOE
HillJ
HoskinsBE
2003 Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425 628 633
24. NishimuraDY
SwiderskiRE
SearbyCC
BergEM
FergusonAL
2005 Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet 77 1021 1033
25. StoetzelC
LaurierV
DavisEE
MullerJ
RixS
2006 BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 38 521 524
26. ChiangAP
BeckJS
YenHJ
TayehMK
ScheetzTE
2006 Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A 103 6287 6292
27. StoetzelC
MullerJ
LaurierV
DavisEE
ZaghloulNA
2007 Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet 80 1 11
28. LeitchCC
ZaghloulNA
DavisEE
StoetzelC
Diaz-FontA
2008 Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 40 443 448
29. MykytynK
MullinsRF
AndrewsM
ChiangAP
SwiderskiRE
2004 Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci U S A 101 8664 8669
30. NishimuraDY
FathM
MullinsRF
SearbyC
AndrewsM
2004 Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101 16588 16593
31. FathMA
MullinsRF
SearbyC
NishimuraDY
WeiJ
2005 Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet 14 1109 1118
32. DavisRE
SwiderskiRE
RahmouniK
NishimuraDY
MullinsRF
2007 A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S A 104 19422 19427
33. YoungRW
1967 The renewal of photoreceptor cell outer segments. J Cell Biol 33 61 72
34. BesharseJC
HorstCJ
1990 The photoreceptor connecting cilium. A model for for the transition zone.
BloodgoodRA
Ciliary and Flagellar Membranes New York Plenum Publishing Corp 389 417
35. KrockBL
PerkinsBD
2008 The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors. J Cell Sci 121 1907 1915
36. PazourGJ
BakerSA
DeaneJA
ColeDG
DickertBL
2002 The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157 103 113
37. Luby-PhelpsK
FogertyJ
BakerSA
PazourGJ
BesharseJC
2008 Spatial distribution of intraflagellar transport proteins in vertebrate photoreceptors. Vision Res 48 413 423
38. TsujikawaM
MalickiJ
2004 Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42 703 716
39. SukumaranS
PerkinsBD
2009 Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 Intraflagellar Transport mutants. Vision Res 49 479 489
40. Abd-El-BarrMM
SykoudisK
AndrabiS
EichersER
PennesiME
2007 Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet-Biedl syndrome. Vision Res 47 3394 3407
41. SwiderskiRE
NishimuraDY
MullinsRF
OlveraMA
RossJL
2007 Gene expression analysis of photoreceptor cell loss in bbs4-knockout mice reveals an early stress gene response and photoreceptor cell damage. Invest Ophthalmol Vis Sci 48 3329 3340
42. YenHJ
TayehMK
MullinsRF
StoneEM
SheffieldVC
2006 Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. Hum Mol Genet 15 667 677
43. TayehMK
YenHJ
BeckJS
SearbyCC
WestfallTA
2008 Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet
44. BlacqueOE
ReardonMJ
LiC
McCarthyJ
MahjoubMR
2004 Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 18 1630 1642
45. PasqualatoS
RenaultL
CherfilsJ
2002 Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep 3 1035 1041
46. HuM
EasterSS
1999 Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev Biol 207 309 321
47. SkoldHN
AspengrenS
WallinM
2002 The cytoskeleton in fish melanophore melanosome positioning. Microsc Res Tech 58 464 469
48. BarralDC
SeabraMC
2004 The melanosome as a model to study organelle motility in mammals. Pigment Cell Res 17 111 118
49. MarksMS
SeabraMC
2001 The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2 738 748
50. BlottEJ
GriffithsGM
2002 Secretory lysosomes. Nat Rev Mol Cell Biol 3 122 131
51. NascimentoAA
RolandJT
GelfandVI
2003 Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol 19 469 491
52. SchmittEA
DowlingJE
1999 Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404 515 536
53. EasterSSJr
NicolaGN
1996 The development of vision in the zebrafish (Danio rerio). Dev Biol 180 646 663
54. BranchekT
1984 The development of photoreceptors in the zebrafish, brachydanio rerio. II. Function. J Comp Neurol 224 116 122
55. LiuY
ShenY
RestJS
RaymondPA
ZackDJ
2001 Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene. Invest Ophthalmol Vis Sci 42 481 487
56. ShenYC
RaymondPA
2004 Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Dev Biol 269 237 251
57. MasaiI
LeleZ
YamaguchiM
KomoriA
NakataA
2003 N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130 2479 2494
58. VihtelicTS
DoroCJ
HydeDR
1999 Cloning and characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of their corresponding proteins. Vis Neurosci 16 571 585
59. BilottaJ
SaszikS
SutherlandSE
2001 Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn 222 564 570
60. YoungRW
1985 Cell differentiation in the retina of the mouse. Anat Rec 212 199 205
61. Abu SafiehL
AldahmeshM
ShamseldinH
HashemM
ShaheenR
2009 Clinical and Molecular Characterization of Bardet-Biedl Syndrome in Consanguineous Populations: The Power of Homozygosity Mapping. J Med Genet
62. WesterfieldM
1993 The Zebrafish book. A guide for the laboratory use of zebrafish (Brachydanio rerio). Eugene, OR University of Oregon Press
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 3
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Deciphering Normal Blood Gene Expression Variation—The NOWAC Postgenome Study
- Papillorenal Syndrome-Causing Missense Mutations in / Result in Hypomorphic Alleles in Mouse and Human
- Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to Mutations
- HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain