HP1 Recruitment in the Absence of Argonaute Proteins in
Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways.
Vyšlo v časopise:
HP1 Recruitment in the Absence of Argonaute Proteins in. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000880
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000880
Souhrn
Highly repetitive and transposable element rich regions of the genome must be stabilized by the presence of heterochromatin. A direct role for RNA interference in the establishment of heterochromatin has been demonstrated in fission yeast. In metazoans, which possess multiple RNA–silencing pathways that are both functionally distinct and spatially restricted, whether RNA silencing contributes directly to heterochromatin formation is not clear. Previous studies in Drosophila melanogaster have suggested the involvement of both the AGO2-dependent endogenous small interfering RNA (endo-siRNA) as well as Piwi-interacting RNA (piRNA) silencing pathways. In order to determine if these Argonaute genes are required for heterochromatin formation, we utilized transcriptional reporters and chromatin immunoprecipitation of the critical factor Heterochromatin Protein 1 (HP1) to monitor the heterochromatic state of piRNA clusters, which generate both endo-siRNAs and the bulk of piRNAs. Surprisingly, we find that mutation of AGO2 or piwi increases silencing at piRNA clusters corresponding to an increase of HP1 association. Furthermore, loss of piRNA production from a single piRNA cluster results in genome-wide redistribution of HP1 and reduction of silencing at a distant heterochromatic site, suggesting indirect effects on HP1 recruitment. Taken together, these results indicate that heterochromatin forms independently of endo-siRNA and piRNA pathways.
Zdroje
1. GrewalSI
ElginSC
2007 Transcription and RNA interference in the formation of heterochromatin. Nature 447 399 406
2. MasonJM
FrydrychovaRC
BiessmannH
2008 Drosophila telomeres: an exception providing new insights. Bioessays 30 25 37
3. TschierschB
HofmannA
KraussV
DornR
KorgeG
1994 The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBOJ 13 3822 3831
4. EissenbergJC
JamesTC
Foster-HartnettDM
HartnettT
NganV
1990 Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad SciUSA 87 9923 9927
5. VolpeTA
KidnerC
HallIM
TengG
GrewalSI
2002 Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297 1833 1837
6. VerdelA
JiaS
GerberS
SugiyamaT
GygiS
2004 RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303 672 676
7. NomaK
SugiyamaT
CamH
VerdelA
ZofallM
2004 RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 36 1174 1180
8. JiaS
NomaK
GrewalSI
2004 RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304 1971 1976
9. KanohJ
SadaieM
UranoT
IshikawaF
2005 Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15 1808 1819
10. HutvagnerG
SimardMJ
2008 Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9 22 32
11. Brower-TolandB
FindleySD
JiangL
LiuL
YinH
2007 Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev 21 2300 2311
12. RehwinkelJ
NatalinP
StarkA
BrenneckeJ
CohenSM
2006 Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol Cell Biol 26 2965 2975
13. WilliamsRW
RubinGM
2002 ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad SciUSA 99 6889 6894
14. WangL
LigoxygakisP
2006 Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiology 211 251 261
15. HammondSM
BoettcherS
CaudyAA
KobayashiR
HannonGJ
2001 Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293 1146 1150
16. CzechB
MaloneCD
ZhouR
StarkA
SchlingeheydeC
2008 An endogenous small interfering RNA pathway in Drosophila. Nature 453 798 802
17. KawamuraY
SaitoK
KinT
OnoY
AsaiK
2008 Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453 793 797
18. ChungWJ
OkamuraK
MartinR
LaiEC
2008 Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18 795 802
19. GhildiyalM
SeitzH
HorwichMD
LiC
DuT
2008 Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320 1077 1081
20. BrenneckeJ
AravinAA
StarkA
DusM
KellisM
2007 Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128 1089 1103
21. YinH
LinH
2007 An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450 304 308
22. SaitoK
NishidaKM
MoriT
KawamuraY
MiyoshiK
2006 Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20 2214 2222
23. GunawardaneLS
SaitoK
NishidaKM
MiyoshiK
KawamuraY
2007 A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315 1587 1590
24. VaginVV
SigovaA
LiC
SeitzH
GvozdevV
2006 A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313 320 324
25. LiC
VaginVV
LeeS
XuJ
MaS
2009 Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137 509 521
26. MaloneCD
BrenneckeJ
DusM
StarkA
McCombieWR
2009 Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137 522 535
27. HarrisAN
MacdonaldPM
2001 Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128 2823 2832
28. CoxDN
ChaoA
LinH
2000 piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127 503 514
29. KlattenhoffC
XiH
LiC
LeeS
XuJ
2009 The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138 1137 1149
30. SaitoK
InagakiS
MituyamaT
KawamuraY
OnoY
2009 A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461 1296 1299
31. DessetS
MeigninC
DastugueB
VauryC
2003 COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164 501 509
32. Prud'hommeN
GansM
MassonM
TerzianC
BuchetonA
1995 Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139 697 711
33. LauNC
RobineN
MartinR
ChungWJ
NikiY
2009 Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 19 1776 1785
34. DeshpandeG
CalhounG
SchedlP
2005 Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev 19 1680 1685
35. FagegaltierD
BougeAL
BerryB
PoisotE
SismeiroO
2009 The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad SciUSA 106 21258 21263
36. Pal-BhadraM
LeibovitchBA
GandhiSG
RaoM
BhadraU
2004 Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303 669 672
37. Giles KE, Ghirlando R, Felsenfeld G Maintenance of a constitutive heterochromatin domain in vertebrates by a Dicer-dependent mechanism. Nat Cell Biol 12 94 99; sup pp 91-96
38. RosemanRR
PirrottaV
GeyerPK
1993 The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBOJ 12 435 442
39. FantiL
DorerDR
BerlocoM
HenikoffS
PimpinelliS
1998 Heterochromatin protein 1 binds transgene arrays. Chromosoma 107 286 292
40. SunFL
HaynesK
SimpsonCL
LeeSD
CollinsL
2004 cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol Cell Biol 24 8210 8220
41. ParnellTJ
VieringMM
SkjesolA
HelouC
KuhnEJ
2003 An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila. Proc Natl Acad SciUSA 100 13436 13441
42. MiyoshiK
TsukumoH
NagamiT
SiomiH
SiomiMC
2005 Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19 2837 2848
43. DorerDR
HenikoffS
1994 Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77 993 1002
44. RobertV
Prud'hommeN
KimA
BuchetonA
PelissonA
2001 Characterization of the flamenco region of the Drosophila melanogaster genome. Genetics 158 701 713
45. HaynesKA
CaudyAA
CollinsL
ElginSC
2006 Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr Biol 16 2222 2227
46. KlenovMS
LavrovSA
StolyarenkoAD
RyazanskySS
AravinAA
2007 Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res 35 5430 5438
47. PengJC
KarpenGH
2007 H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9 25 35
48. LeiEP
CorcesVG
2006 RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38 936 941
49. Pal-BhadraM
BhadraU
BirchlerJA
2002 RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9 315 327
50. GrimaudC
BantigniesF
Pal-BhadraM
GhanaP
BhadraU
2006 RNAi components are required for nuclear clustering of Polycomb group response elements. Cell 124 957 971
51. ZofallM
GrewalSI
2006 Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol Cell 22 681 692
52. ChenES
ZhangK
NicolasE
CamHP
ZofallM
2008 Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451 734 737
53. KlocA
MartienssenR
2008 RNAi, heterochromatin and the cell cycle. Trends Genet 24 511 517
54. MaisonC
BaillyD
PetersAH
QuivyJP
RocheD
2002 Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30 329 334
55. GerasimovaTI
ByrdK
CorcesVG
2000 A chromatin insulator determines the nuclear localization of DNA. Mol Cell 6 1025 1035
56. MongelardF
LabradorM
BaxterEM
GerasimovaTI
CorcesVG
2002 Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 160 1481 1487
57. LangmeadB
TrapnellC
PopM
SalzbergSL
2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10 R25
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Papillorenal Syndrome-Causing Missense Mutations in / Result in Hypomorphic Alleles in Mouse and Human
- Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to Mutations
- Deciphering Normal Blood Gene Expression Variation—The NOWAC Postgenome Study
- HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain