Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients
Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.
Vyšlo v časopise:
Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000871
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000871
Souhrn
Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.
Zdroje
1. KraemerKH
LeeMM
ScottoJ
1987 Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123 241 250
2. NouspikelT
2008 Nucleotide excision repair and neurological diseases. DNA Repair (Amst) 7 1155 1167
3. RobbinsJH
BrumbackRA
MendionesM
BarrettSF
CarlJR
1991 Neurological disease in xeroderma pigmentosum. Documentation of a late onset type of the juvenile onset form. Brain 114 ( Pt 3) 1335 1361
4. GilletLC
ScharerOD
2006 Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106 253 276
5. SugasawaK
NgJM
MasutaniC
IwaiS
van der SpekPJ
1998 Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2 223 232
6. VolkerM
MoneMJ
KarmakarP
van HoffenA
SchulW
2001 Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 8 213 224
7. SugasawaK
2006 UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 37 189 202
8. LaineJP
EglyJM
2006 When transcription and repair meet: a complex system. Trends Genet 22 430 436
9. HanawaltPC
SpivakG
2008 Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9 958 970
10. TroelstraC
van GoolA
de WitJ
VermeulenW
BootsmaD
1992 ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71 939 953
11. HenningKA
LiL
IyerN
McDanielLD
ReaganMS
1995 The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82 555 564
12. NakatsuY
AsahinaH
CitterioE
RademakersS
VermeulenW
2000 XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem 275 34931 34937
13. EvansE
MoggsJG
HwangJR
EglyJM
WoodRD
1997 Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J 16 6559 6573
14. O'DonovanA
DaviesAA
MoggsJG
WestSC
WoodRD
1994 XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371 432 435
15. BardwellAJ
BardwellL
TomkinsonAE
FriedbergEC
1994 Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 265 2082 2085
16. SijbersAM
de LaatWL
ArizaRR
BiggerstaffM
WeiYF
1996 Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86 811 822
17. StaresincicL
FagbemiAF
EnzlinJH
GourdinAM
WijgersN
2009 Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 28 1111 1120
18. ShivjiMK
PodustVN
HubscherU
WoodRD
1995 Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34 5011 5017
19. MoserJ
KoolH
GiakzidisI
CaldecottK
MullendersLH
2007 Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27 311 323
20. OgiT
LehmannAR
2006 The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat Cell Biol 8 640 642
21. de LaatWL
AppeldoornE
JaspersNG
HoeijmakersJH
1998 DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 273 7835 7842
22. NiedernhoferLJ
OdijkH
BudzowskaM
van DrunenE
MaasA
2004 The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 24 5776 5787
23. AhmadA
RobinsonAR
DuensingA
van DrunenE
BeverlooHB
2008 ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 28 5082 5092
24. GaillardPH
WoodRD
2001 Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res 29 872 879
25. de LaatWL
SijbersAM
OdijkH
JaspersNG
HoeijmakersJH
1998 Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res 26 4146 4152
26. BiggerstaffM
SzymkowskiDE
WoodRD
1993 Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J 12 3685 3692
27. EnzlinJH
ScharerOD
2002 The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. Embo J 21 2045 2053
28. TsodikovOV
IvanovD
OrelliB
StaresincicL
ShoshaniI
2007 Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J 26 4768 4776
29. LiL
ElledgeSJ
PetersonCA
BalesES
LegerskiRJ
1994 Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci U S A 91 5012 5016
30. ZengL
QuillietX
Chevallier-LagenteO
EvenoE
SarasinA
1997 Retrovirus-mediated gene transfer corrects DNA repair defect of xeroderma pigmentosum cells of complementation groups A, B and C. 4 Gene Ther 1077 1084
31. MoriwakiS
KraemerKH
2001 Xeroderma pigmentosum–bridging a gap between clinic and laboratory. Photodermatol Photoimmunol Photomed 17 47 54
32. NiedernhoferLJ
GarinisGA
RaamsA
LalaiAS
RobinsonAR
2006 A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444 1038 1043
33. SijbersAM
van Voorst VaderPC
SnoekJW
RaamsA
JaspersNG
1998 Homozygous R788W point mutation in the XPF gene of a patient with xeroderma pigmentosum and late-onset neurologic disease. J Invest Dermatol 110 832 836
34. VermeulenW
BergmannE
AuriolJ
RademakersS
FritP
2000 Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet 26 307 313
35. HoeijmakersJH
EkerAP
WoodRD
RobinsP
1990 Use of in vivo and in vitro assays for the characterization of mammalian excision repair and isolation of repair proteins. Mutat Res 236 223 238
36. TaylorEM
BroughtonBC
BottaE
StefaniniM
SarasinA
1997 Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A 94 8658 8663
37. VermeulenW
ScottRJ
RodgersS
MullerHJ
ColeJ
1994 Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet 54 191 200
38. NouspikelT
LalleP
LeadonSA
CooperPK
ClarksonSG
1997 A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A 94 3116 3121
39. ItoS
KuraokaI
ChymkowitchP
CompeE
TakedachiA
2007 XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26 231 243
40. KraemerKH
PatronasNJ
SchiffmannR
BrooksBP
TamuraD
2007 Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145 1388 1396
41. de BoerJ
AndressooJO
de WitJ
HuijmansJ
BeemsRB
2002 Premature aging in mice deficient in DNA repair and transcription. Science 296 1276 1279
42. TakayamaK
SalazarEP
BroughtonBC
LehmannAR
SarasinA
1996 Defects in the DNA repair and transcription gene ERCC2(XPD) in trichothiodystrophy. Am J Hum Genet 58 263 270
43. van GoolAJ
CitterioE
RademakersS
van OsR
VermeulenW
1997 The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. Embo J 16 5955 5965
44. ClarksonSG
2003 The XPG story. Biochimie 85 1113 1121
45. DubaeleS
Proietti De SantisL
BienstockRJ
KerielA
StefaniniM
2003 Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 11 1635 1646
46. MatsumuraY
NishigoriC
YagiT
ImamuraS
TakebeH
1998 Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum Mol Genet 7 969 974
47. ZelleB
BerendsF
LohmanPH
1980 Repair of damage by ultraviolet radiation in xeroderma pigmentosum cell strains of complementation groups E and F. Mutat Res 73 157 169
48. JaspersNG
RaamsA
SilengoMC
WijgersN
NiedernhoferLJ
2007 First reported patient with human ERCC1 deficiency has cerebro-oculo-facio-skeletal syndrome with a mild defect in nucleotide excision repair and severe developmental failure. Am J Hum Genet 80 457 466
49. MollUM
RiouG
LevineAJ
1992 Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A 89 7262 7266
50. KauTR
WayJC
SilverPA
2004 Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4 106 117
51. MinYH
CheongJW
KimJY
EomJI
LeeST
2004 Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res 64 5225 5231
52. Rosin-ArbesfeldR
CliffeA
BrabletzT
BienzM
2003 Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. Embo J 22 1101 1113
53. KarinM
CaoY
GretenFR
LiZW
2002 NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2 301 310
54. FabbroM
RodriguezJA
BaerR
HendersonBR
2002 BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J Biol Chem 277 21315 21324
55. EdwardsSW
TanCM
LimbirdLE
2000 Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol Sci 21 304 308
56. WelshMJ
SmithAE
1993 Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73 1251 1254
57. WeedaG
DonkerI
de WitJ
MorreauH
JanssensR
1997 Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7 427 439
58. DolleME
BusuttilRA
GarciaAM
WijnhovenS
van DrunenE
2006 Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat Res 596 22 35
59. PootM
VerkerkA
KosterJF
EsterbauerH
JongkindJF
1987 Influence of cumene hydroperoxide and 4-hydroxynonenal on the glutathione metabolism during in vitro ageing of human skin fibroblasts. Eur J Biochem 162 287 291
60. AraseS
KozukaT
TanakaK
IkenagaM
TakebeH
1979 A sixth complementation group in xeroderma pigmentosum. Mutat Res 59 143 146
61. BerneburgM
ClingenPH
HarcourtSA
LoweJE
TaylorEM
2000 The cancer-free phenotype in trichothiodystrophy is unrelated to its repair defect. Cancer Res 60 431 438
62. LimsirichaikulS
NiimiA
FawcettH
LehmannA
YamashitaS
2009 A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 37 e31
63. van VuurenAJ
AppeldoornE
OdijkH
HumbertS
MoncollinV
1995 Partial characterization of the DNA repair protein complex, containing the ERCC1, ERCC4, ERCC11 and XPF correcting activities. Mutat Res 337 25 39
64. KapetanakiMG
Guerrero-SantoroJ
BisiDC
HsiehCL
Rapic-OtrinV
2006 The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 103 2588 2593
65. de JongeAJ
VermeulenW
KleinB
HoeijmakersJH
1983 Microinjection of human cell extracts corrects xeroderma pigmentosum defect. Embo J 2 637 641
66. WeedaG
van HamRC
VermeulenW
BootsmaD
van der EbAJ
1990 A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 62 777 791
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 3
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Papillorenal Syndrome-Causing Missense Mutations in / Result in Hypomorphic Alleles in Mouse and Human
- Fatal Cardiac Arrhythmia and Long-QT Syndrome in a New Form of Congenital Generalized Lipodystrophy with Muscle Rippling (CGL4) Due to Mutations
- Deciphering Normal Blood Gene Expression Variation—The NOWAC Postgenome Study
- HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain