#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Papillorenal Syndrome-Causing Missense Mutations in / Result in Hypomorphic Alleles in Mouse and Human


Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice.


Vyšlo v časopise: Papillorenal Syndrome-Causing Missense Mutations in / Result in Hypomorphic Alleles in Mouse and Human. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000870
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000870

Souhrn

Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice.


Zdroje

1. EcclesMR

2004 PAX2 and the Renal Coloboma Syndrome.

EpsteinCJ

EricksonRP

Wynshaw-BorisA

Inborn errors of development: The molecular basis of clinical disorders of morphogenesis Oxford Oxford University Press 633 642

2. SchimmentiLA

PierpontME

CarpenterBL

KashtanCE

JohnsonMR

1995 Autosomal dominant optic nerve colobomas, vesicoureteral reflux, and renal anomalies. Am J Med Genet 59 204 208

3. EcclesMR

SchimmentiLA

1999 Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin Genet 56 1 9

4. SanyanusinP

SchimmentiLA

McNoeLA

WardTA

PierpontME

1995 Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9 358 364

5. DureauP

Attie-BitachT

SalomonR

BettembourgO

AmielJ

2001 Renal coloboma syndrome. Ophthalmology 108 1912 1916

6. SchimmentiLA

ManligasGS

SievingPA

2003 Optic nerve dysplasia and renal insufficiency in a family with a novel PAX2 mutation, Arg115X: further ophthalmologic delineation of the renal-coloboma syndrome. Ophthalmic Genet 24 191 202

7. ParsaCF

SilvaED

SundinOH

GoldbergMF

De JongMR

2001 Redefining papillorenal syndrome: an underdiagnosed cause of ocular and renal morbidity. Ophthalmology 108 738 749

8. KhanAO

NowilatySR

2005 Early diagnosis of the papillorenal syndrome by optic disc morphology. J Neuroophthalmol 25 209 211

9. AmielJ

AudollentS

JolyD

DureauP

SalomonR

2000 PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 8 820 826

10. ChungGW

EdwardsAO

SchimmentiLA

ManligasGS

ZhangYH

2001 Renal-coloboma syndrome: report of a novel PAX2 gene mutation. Am J Ophthalmol 132 910 914

11. FordB

RuppsR

LirenmanD

Van AllenMI

FarquharsonD

2001 Renal-coloboma syndrome: prenatal detection and clinical spectrum in a large family. Am J Med Genet 99 137 141

12. NishimotoK

IijimaK

ShirakawaT

KitagawaK

SatomuraK

2001 PAX2 gene mutation in a family with isolated renal hypoplasia. J Am Soc Nephrol 12 1769 1772

13. YoshimuraK

YoshidaS

YamajiY

KomoriA

YoshidaA

2005 De novo insG619 mutation in PAX2 gene in a Japanese patient with papillorenal syndrome. Am J Ophthalmol 139 733 735

14. CheongHI

ChoHY

KimJH

YuYS

HaIS

2007 A clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol 22 1283 1289

15. DevriendtK

MatthijsG

Van DammeB

Van CaesbroeckD

EcclesM

1998 Missense mutation and hexanucleotide duplication in the PAX2 gene in two unrelated families with renal-coloboma syndrome (MIM 120330). Hum Genet 103 149 153

16. HigashideT

WadaT

SakuraiM

YokoyamaH

SugiyamaK

2005 Macular abnormalities and optic disk anomaly associated with a new PAX2 missense mutation. Am J Ophthalmol 139 203 205

17. SchimmentiLA

CunliffeHE

McNoeLA

WardTA

FrenchMC

1997 Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet 60 869 878

18. SanyanusinP

McNoeLA

SullivanMJ

WeaverRG

EcclesMR

1995 Mutation of PAX2 in two siblings with renal-coloboma syndrome. Hum Mol Genet 4 2183 2184

19. SchimmentiLA

ShimHH

WirtschafterJD

PanzarinoVA

KashtanCE

1999 Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal-coloboma syndrome. Hum Mutat 14 369 376

20. NornesHO

DresslerGR

KnapikEW

DeutschU

GrussP

1990 Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 797 809

21. DresslerGR

DeutschU

ChowdhuryK

NornesHO

GrussP

1990 Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 787 795

22. TorresM

Gomez-PardoE

DresslerGR

GrussP

1995 Pax-2 controls multiple steps of urogenital development. Development 121 4057 4065

23. TorresM

Gomez-PardoE

GrussP

1996 Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 3381 3391

24. FavorJ

SandulacheR

Neuhauser-KlausA

PretschW

ChatterjeeB

1996 The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93 13870 13875

25. KellerSA

JonesJM

BoyleA

BarrowLL

KillenPD

1994 Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 23 309 320

26. PorteousS

TorbanE

ChoNP

CunliffeH

ChuaL

2000 Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9 1 11

27. XuHE

RouldMA

XuW

EpsteinJA

MaasRL

1999 Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Dev 13 1263 1275

28. XuW

RouldMA

JunS

DesplanC

PaboCO

1995 Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell 80 639 650

29. CaiY

BrophyPD

LevitanI

StifaniS

DresslerGR

2003 Groucho suppresses Pax2 transactivation by inhibition of JNK-mediated phosphorylation. Embo J 22 5522 5529

30. CaiY

LechnerMS

NihalaniD

PrindleMJ

HolzmanLB

2002 Phosphorylation of Pax2 by the c-Jun N-terminal kinase and enhanced Pax2-dependent transcription activation. J Biol Chem 277 1217 1222

31. OttesonDC

SheldenE

JonesJM

KameokaJ

HitchcockPF

1998 Pax2 expression and retinal morphogenesis in the normal and Krd mouse. Dev Biol 193 209 224

32. LechnerMS

DresslerGR

1996 Mapping of Pax-2 transcription activation domains. J Biol Chem 271 21088 21093

33. FickenscherHR

ChalepakisG

GrussP

1993 Murine Pax-2 protein is a sequence-specific trans-activator with expression in the genital system. DNA Cell Biol 12 381 391

34. GronskovK

RosenbergT

SandA

Brondum-NielsenK

1999 Mutational analysis of PAX6: 16 novel mutations including 5 missense mutations with a mild aniridia phenotype. Eur J Hum Genet 7 274 286

35. SaleemRA

Banerjee-BasuS

BerryFB

BaxevanisAD

WalterMA

2001 Analyses of the Effects That Disease-Causing Missense Mutations Have on the Structure and Function of the Winged-Helix Protein FOXC1. The American Journal of Human Genetics 68 627 641

36. FootzTK

IdreesF

AcharyaM

KozlowskiK

WalterMA

2009 Analysis of mutations of the PITX2 transcription factor found in Axenfeld-Rieger Syndrome patients. Invest Ophthalmol Vis Sci iovs.08 3251

37. FootzT

IdreesF

AcharyaM

KozlowskiK

WalterMA

2009 Analysis of mutations of the PITX2 transcription factor found in patients with Axenfeld-Rieger syndrome. Invest Ophthalmol Vis Sci 50 2599 2606

38. D'EliaAV

PuppinC

PellizzariL

PiantaA

BregantE

2006 Molecular analysis of a human PAX6 homeobox mutant. Eur J Hum Genet 14 744 751

39. BowesC

LiT

DancigerM

BaxterLC

AppleburyML

1990 Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347 677 680

40. JiW

HerronB

JonesJM

JenkinsNA

GilbertDJ

1999 Identification of genes within the Krd deletion on mouse chromosome 19. Mamm Genome 10 399 401

41. MiH

BarresBA

1999 Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci 19 1049 1061

42. Chan-LingT

McLeodDS

HughesS

BaxterL

ChuY

2004 Astrocyte-endothelial cell relationships during human retinal vascular development. Invest Ophthalmol Vis Sci 45 2020 2032

43. ChuY

HughesS

Chan-LingT

2001 Differentiation and migration of astrocyte precursor cells and astrocytes in human fetal retina: relevance to optic nerve coloboma. Faseb J 15 2013 2015

44. GongKQ

YallowitzAR

SunH

DresslerGR

WellikDM

2007 A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27 7661 7668

45. DuX

TabetaK

HoebeK

LiuH

MannN

2004 Velvet, a dominant Egfr mutation that causes wavy hair and defective eyelid development in mice. Genetics 166 331 340

46. SmithRS

editor

2002 Systematic Evaluation of the Mouse Eye: Anatomy, Pathology and Biomethods. First ed. Boca Raton CRC Press

47. AbolaE

BernsteinFC

BryantSH

KoetzleTF

WengJ

1987 Protein data bank.

BergerhoffG

SieversR

Crystallographic databases-information content, software systems, scientific applications Cambridge Data Comission on the International Union of Crystallography 107 132

48. NeedlemanSB

WunschCD

1970 A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48 443 453

49. LeeC

SubbiahS

1991 Prediction of protein side-chain conformation by packing optimization. J Mol Biol 217 373 388

50. LeeC

1994 Predicting protein mutant energetics by self-consistent ensemble optimization. J Mol Biol 236 918 939

51. LevittM

1992 Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226 507 533

52. LaskowskiRA

MacArthurMW

MossDS

ThorntonJM

1993 PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26 283 291

53. JiangX

CoffinoP

LiX

2004 Development of a method for screening short-lived proteins using green fluorescent protein. Genome Biol 5 R81

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#