#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multiple Signals Converge on a Differentiation MAPK Pathway


An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.


Vyšlo v časopise: Multiple Signals Converge on a Differentiation MAPK Pathway. PLoS Genet 6(3): e32767. doi:10.1371/journal.pgen.1000883
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000883

Souhrn

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.


Zdroje

1. DoroquezDB

RebayI

2006 Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 41 339 385

2. HurlbutGD

KankelMW

LakeRJ

Artavanis-TsakonasS

2007 Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19 166 175

3. WagnerEF

NebredaAR

2009 Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9 537 549

4. GimenoCJ

LjungdahlPO

StylesCA

FinkGR

1992 Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68 1077 1090

5. SchwartzMA

MadhaniHD

2004 Principles of map kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38 725 748

6. VerstrepenKJ

KlisFM

2006 Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60 5 15

7. JinR

DobryCJ

McCownPJ

KumarA

2008 Large-scale analysis of yeast filamentous growth by systematic gene disruption and overexpression. Mol Biol Cell 19 284 296

8. BornemanAR

Leigh-BellJA

YuH

BertoneP

GersteinM

2006 Target hub proteins serve as master regulators of development in yeast. Genes Dev 20 435 448

9. PrinzS

Avila-CampilloI

AldridgeC

SrinivasanA

DimitrovK

2004 Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res 14 380 390

10. MadhaniHD

GalitskiT

LanderES

FinkGR

1999 Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A 96 12530 12535

11. LoHJ

KohlerJR

DiDomenicoB

LoebenbergD

CacciapuotiA

1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

12. WhitewayM

BachewichC

2007 Morphogenesis in Candida albicans. Annu Rev Microbiol 61 529 553

13. NobileCJ

MitchellAP

2006 Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8 1382 1391

14. RobertsRL

FinkGR

1994 Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8 2974 2985

15. MadhaniHD

FinkGR

1997 Combinatorial control required for the specificity of yeast MAPK signaling. Science 275 1314 1317

16. MadhaniHD

StylesCA

FinkGR

1997 MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91 673 684

17. MoschHU

KublerE

KrappmannS

FinkGR

BrausGH

1999 Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10 1325 1335

18. VinodPK

SenguptaN

BhatPJ

VenkateshKV

2008 Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 3 e1663 doi:10.1371/journal.pone.0001663

19. LambTM

MitchellAP

2003 The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23 677 686

20. BarwellKJ

BoysenJH

XuW

MitchellAP

2005 Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell 4 890 899

21. RothfelsK

TannyJC

MolnarE

FriesenH

CommissoC

2005 Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25 6772 6788

22. ReynoldsTB

2006 The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae. Eukaryot Cell 5 1266 1275

23. KuchinS

VyasVK

CarlsonM

2002 Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22 3994 4000

24. KuchinS

VyasVK

CarlsonM

2003 Role of the yeast Snf1 protein kinase in invasive growth. Biochem Soc Trans 31 175 177

25. CullenPJ

SpragueGFJr

2000 Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97 13619 13624

26. PalecekSP

ParikhAS

KronSJ

2000 Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156 1005 1023

27. MoschHU

FinkGR

1997 Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145 671 684

28. CullenPJ

SabbaghWJr

GrahamE

IrickMM

van OldenEK

2004 A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18 1695 1708

29. SinghPK

HollingsworthMA

2006 Cell surface-associated mucins in signal transduction. Trends Cell Biol 16 467 476

30. ParkHO

BiE

2007 Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71 48 96

31. VadaieN

DionneH

AkajagborDS

NickersonSR

KrysanDJ

2008 Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181 1073 1081

32. RobertsCJ

RaymondCK

YamashiroCT

StevensTH

1991 Methods for studying the yeast vacuole. Methods Enzymol 194 644 661

33. SchluterC

LamKK

BrummJ

WuBW

SaundersM

2008 Global Analysis of Yeast Endosomal Transport Identifies the Vps55/68 Sorting Complex. Mol Biol Cell 19 1282 1294

34. BonangelinoCJ

ChavezEM

BonifacinoJS

2002 Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13 2486 2501

35. WinzelerEA

ShoemakerDD

AstromoffA

LiangH

AndersonK

1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906

36. GelperinDM

WhiteMA

WilkinsonML

KonY

KungLA

2005 Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19 2816 2826

37. LiuH

StylesCA

FinkGR

1996 Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144 967 978

38. NiuW

LiZ

ZhanW

IyerVR

MarcotteEM

2008 Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 4 e1000120 doi:10.1371/journal.pgen.1000120

39. PitoniakA

BirkayaB

DionneHS

VadiaeN

CullenPJ

2009 The Signaling Mucins Msb2 and Hkr1 Differentially Regulate the Filamentation MAPK Pathway and Contribute to a Multimodal Response. Mol Biol Cell

40. TatebayashiK

TanakaK

YangHY

YamamotoK

MatsushitaY

2007 Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. Embo J 26 3521 3533

41. KarunanithiSR

VadaieN

BirkayaB

DionneHM

JoshiJ

(SUBMITTED) Regulation and Functional Basis of Mucin Shedding in a Unicellular Eukaryote.

42. GuoB

StylesCA

FengQ

FinkGR

2000 A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97 12158 12163

43. KrysanDJ

TingEL

AbeijonC

KroosL

FullerRS

2005 Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell 4 1364 1374

44. AndrewsBJ

HerskowitzI

1989 The yeast SWI4 protein contains a motif present in developmental regulators and is part of a complex involved in cell-cycle-dependent transcription. Nature 342 830 833

45. BreedenL

MikesellGE

1991 Cell cycle-specific expression of the SWI4 transcription factor is required for the cell cycle regulation of HO transcription. Genes Dev 5 1183 1190

46. NasmythK

DirickL

1991 The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66 995 1013

47. OgasJ

AndrewsBJ

HerskowitzI

1991 Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66 1015 1026

48. BaetzK

AndrewsB

1999 Regulation of cell cycle transcription factor Swi4 through auto-inhibition of DNA binding. Mol Cell Biol 19 6729 6741

49. BeanJM

SiggiaED

CrossFR

2005 High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171 49 61

50. BardwellL

2006 Mechanisms of MAPK signalling specificity. Biochem Soc Trans 34 837 841

51. AbdullahU

CullenPJ

2009 The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast. Eukaryot Cell 8 1362 1372

52. JiaY

RothermelB

ThorntonJ

ButowRA

1997 A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 17 1110 1117

53. DilovaI

AronovaS

ChenJC

PowersT

2004 Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem 279 46527 46535

54. Ferreira JuniorJR

SpirekM

LiuZ

ButowRA

2005 Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae. Gene 354 2 8

55. LiuZ

SekitoT

EpsteinCB

ButowRA

2001 RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. Embo J 20 7209 7219

56. GiannattasioS

LiuZ

ThorntonJ

ButowRA

2005 Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J Biol Chem 280 42528 42535

57. KligLS

HomannMJ

CarmanGM

HenrySA

1985 Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opi1 mutant. J Bacteriol 162 1135 1141

58. WhiteMJ

HirschJP

HenrySA

1991 The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266 863 872

59. VothWP

YuY

TakahataS

KretschmannKL

LiebJD

2007 Forkhead proteins control the outcome of transcription factor binding by antiactivation. Embo J 26 4324 4334

60. KimTS

LeeSB

KangHS

2004 Glucose repression of STA1 expression is mediated by the Nrg1 and Sfl1 repressors and the Srb8-11 complex. Mol Cell Biol 24 7695 7706

61. MoschHU

RobertsRL

FinkGR

1996 Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93 5352 5356

62. CarterGW

RuppS

FinkGR

GalitskiT

2006 Disentangling information flow in the Ras-cAMP signaling network. Genome Res 16 520 526

63. RobertsonLS

CaustonHC

YoungRA

FinkGR

2000 The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97 5984 5988

64. ZamanS

LippmanSI

SchneperL

SlonimN

BroachJR

2009 Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5 245

65. RobertsCJ

NelsonB

MartonMJ

StoughtonR

MeyerMR

2000 Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287 873 880

66. RuppS

SummersE

LoHJ

MadhaniH

FinkG

1999 MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18 1257 1269

67. ZamanS

LippmanSI

ZhaoX

BroachJR

2008 How Saccharomyces Responds to Nutrients. Annu Rev Genet

68. SantangeloGM

2006 Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70 253 282

69. Boy-MarcotteE

IkonomiP

JacquetM

1996 SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation. Mol Biol Cell 7 529 539

70. PoulletP

CrechetJB

BernardiA

ParmeggianiA

1995 Properties of the catalytic domain of sdc25p, a yeast GDP/GTP exchange factor of Ras proteins. Complexation with wild-type Ras2p, [S24N]Ras2p and [R80D, N81D]Ras2p. Eur J Biochem 227 537 544

71. TodaT

UnoI

IshikawaT

PowersS

KataokaT

1985 In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40 27 36

72. SassP

FieldJ

NikawaJ

TodaT

WiglerM

1986 Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 83 9303 9307

73. PanX

HeitmanJ

1999 Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19 4874 4887

74. van DykD

PretoriusIS

BauerFF

2005 Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169 91 106

75. RobertsonLS

FinkGR

1998 The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95 13783 13787

76. LorenzMC

PanX

HarashimaT

CardenasME

XueY

2000 The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154 609 622

77. LemaireK

Van de VeldeS

Van DijckP

TheveleinJM

2004 Glucose and Sucrose Act as Agonist and Mannose as Antagonist Ligands of the G Protein-Coupled Receptor Gpr1 in the Yeast Saccharomyces cerevisiae. Mol Cell 16 293 299

78. HarashimaT

AndersonS

YatesJR3rd

HeitmanJ

2006 The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 22 819 830

79. PeetersT

LouwetW

GeladeR

NauwelaersD

TheveleinJM

2006 Kelch-repeat proteins interacting with the Galpha protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast. Proc Natl Acad Sci U S A 103 13034 13039

80. HarashimaT

HeitmanJ

2002 The Galpha protein Gpa2 controls yeast differentiation by interacting with kelch repeat proteins that mimic Gbeta subunits. Mol Cell 10 163 173

81. BroachJR

1991 RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet 7 28 33

82. CharizanisC

JuhnkeH

KremsB

EntianKD

1999 The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol Gen Genet 261 740 752

83. HasanR

LeroyC

IsnardAD

LabarreJ

Boy-MarcotteE

2002 The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol Microbiol 45 233 241

84. FabrizioP

LiouLL

MoyVN

DiasproA

ValentineJS

2003 SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163 35 46

85. LongoVD

EllerbyLM

BredesenDE

ValentineJS

GrallaEB

1997 Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137 1581 1588

86. SinclairD

MillsK

GuarenteL

1998 Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52 533 560

87. IgualJC

NavarroB

1996 Respiration and low cAMP-dependent protein kinase activity are required for high-level expression of the peroxisomal thiolase gene in Saccharomyces cerevisiae. Mol Gen Genet 252 446 455

88. RundlettSE

CarmenAA

KobayashiR

BavykinS

TurnerBM

1996 HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93 14503 14508

89. KadoshD

StruhlK

1997 Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89 365 371

90. KastenMM

DorlandS

StillmanDJ

1997 A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 17 4852 4858

91. LechnerT

CarrozzaMJ

YuY

GrantPA

EberharterA

2000 Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3[middle dot]Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J Biol Chem 275 40961 40966

92. CarrozzaMJ

LiB

FlorensL

SuganumaT

SwansonSK

2005 Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123 581 592

93. ColinaAR

YoungD

2005 Raf60, a novel component of the Rpd3 histone deacetylase complex required for Rpd3 activity in Saccharomyces cerevisiae. J Biol Chem 280 42552 42556

94. QiM

ElionEA

2005 MAP kinase pathways. J Cell Sci 118 3569 3572

95. MurphyLO

BlenisJ

2006 MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31 268 275

96. CookJG

BardwellL

KronSJ

ThornerJ

1996 Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10 2831 2848

97. OlsonKA

NelsonC

TaiG

HungW

YongC

2000 Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol Cell Biol 20 4199 4209

98. ChouS

LaneS

LiuH

2006 Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 26 4794 4805

99. De NadalE

ZapaterM

AlepuzPM

SumoyL

MasG

2004 The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427 370 374

100. VidalM

StrichR

EspositoRE

GaberRF

1991 RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11 6306 6316

101. BarralesRR

JimenezJ

IbeasJI

2008 Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178 145 156

102. LoWS

DranginisAM

1996 FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178 7144 7151

103. LambrechtsMG

BauerFF

MarmurJ

PretoriusIS

1996 Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93 8419 8424

104. LoWS

DranginisAM

1998 The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9 161 171

105. ReynoldsTB

FinkGR

2001 Bakers' yeast, a model for fungal biofilm formation. Science 291 878 881

106. BardwellL

2004 A walk-through of the yeast mating pheromone response pathway. Peptides 25 1465 1476

107. ElionEA

2000 Pheromone response, mating and cell biology. Curr Opin Microbiol 3 573 581

108. NakayamaN

MiyajimaA

AraiK

1987 Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autocrine cell-cycle arrest results from forced expression of STE2. Embo J 6 249 254

109. BenderA

SpragueGFJr

1986 Yeast peptide pheromones, a-factor and alpha-factor, activate a common response mechanism in their target cells. Cell 47 929 937

110. McDonaldCM

WagnerM

DunhamMJ

ShinME

AhmedNT

2009 The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 181 511 523

111. MasG

de NadalE

DechantR

de la ConcepcionML

LogieC

2009 Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. Embo J 28 326 336

112. DunnKL

EspinoPS

DrobicB

HeS

DavieJR

2005 The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83 1 14

113. KurdistaniSK

RobyrD

TavazoieS

GrunsteinM

2002 Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31 248 254

114. MiottoB

SagnierT

BerengerH

BohmannD

PradelJ

2006 Chameau HAT and DRpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev 20 101 112

115. SambrookJ

FritschEF

ManiatisT

1989 Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

116. RoseMD

WinstonF

HieterP

1990 Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

117. BaudinA

Ozier-KalogeropoulosO

DenouelA

LacrouteF

CullinC

1993 A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21 3329 3330

118. LongtineMS

McKenzieA3rd

DemariniDJ

ShahNG

WachA

1998 Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14 953 961

119. SchneiderBL

SeufertW

SteinerB

YangQH

FutcherAB

1995 Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11 1265 1274

120. GoldsteinAL

McCuskerJH

1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15 1541 1553

121. LalouxI

JacobsE

DuboisE

1994 Involvement of SRE element of Ty1 transposon in TEC1-dependent transcriptional activation. Nucleic Acids Res 22 999 1005

122. ChantJ

PringleJR

1995 Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J Cell Biol 129 751 765

123. JennessDD

GoldmanBS

HartwellLH

1987 Saccharomyces cerevisiae mutants unresponsive to alpha-factor pheromone: alpha-factor binding and extragenic suppression. Mol Cell Biol 7 1311 1319

124. CullenPJ

SchultzJ

HoreckaJ

StevensonBJ

JigamiY

2000 Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 155 1005 1018

125. GietzRD

SchiestlRH

2007 Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2 5 8

126. GietzRD

WoodsRA

2002 Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350 87 96

127. EisenMB

SpellmanPT

BrownPO

BotsteinD

1998 Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 14863 14868

128. DeRisiJL

IyerVR

BrownPO

1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278 680 686

129. LashkariDA

DeRisiJL

McCuskerJH

NamathAF

GentileC

1997 Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 94 13057 13062

130. FazzioTG

KooperbergC

GoldmarkJP

NealC

BasomR

2001 Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21 6450 6460

131. YuMC

LammingDW

EskinJA

SinclairDA

SilverPA

2006 The role of protein arginine methylation in the formation of silent chromatin. Genes Dev 20 3249 3254

132. PfafflMW

2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 e45

133. VoynovV

VerstrepenKJ

JansenA

RunnerVM

BuratowskiS

2006 Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 103 14423 14428

134. McCaffreyG

ClayFJ

KelsayK

SpragueGFJr

1987 Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol Cell Biol 7 2680 2690

135. O'RourkeSM

HerskowitzI

2004 Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15 532 542

136. RiversDM

SpragueGFJr

2003 Autocrine activation of the pheromone response pathway in matalpha2- cells is attenuated by SST2- and ASG7-dependent mechanisms. Mol Genet Genomics 270 225 233

137. HagenDC

McCaffreyG

SpragueGFJr

1991 Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 11 2952 2961

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#