#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection


We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects.


Vyšlo v časopise: A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002270
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002270

Souhrn

We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects.


Zdroje

1. CheungVSpielmanR 2009 Genetics of human gene expression: mapping DNA variants that influence gene expression. Nature reviews. Genetics 10 595 604

2. DimasADeutschSStrangerBMontgomerySBorelC 2009 Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325 1246 1250

3. MontgomerySSammethMGutierrez-ArcelusMLachRIngleC 2010 Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464 773 777

4. PickrellJMarioniJPaiADegnerJEngelhardtB 2010 Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464 768 772

5. VeyrierasJ-BKudaravalliSKimSDermitzakisEGiladY 2008 High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4 e1000214 doi:10.1371/journal.pgen.1000214

6. NicaADermitzakisE 2008 Using gene expression to investigate the genetic basis of complex disorders. Hum Mol Genet 17 ddn285 134

7. CooksonWLiangLAbecasisGMoffattMLathropM 2009 Mapping complex disease traits with global gene expression. Nature reviews. Genetics 10 184 194

8. TangKThorntonKStonekingM 2007 A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 5 e171 doi:10.1371/journal.pbio.0050171

9. ChenYZhuJLumPYYangXPintoS 2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452 429 435

10. SchadtE 2009 Molecular networks as sensors and drivers of common human diseases. Nature 461 218 223

11. GibbsRvan der BrugMHernandezDTraynorBNallsM 2010 Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6 e1000952 doi:10.1371/journal.pgen.1000952

12. KloseJNockCHerrmannMStühlerKMarcusK 2002 Genetic analysis of the mouse brain proteome. Nat Genet 30 385 393

13. DumasM-EWilderSBihoreauM-TBartonRFearnsideJ 2007 Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39 666 672

14. IlligTGiegerCZhaiGRomisch-MarglWWang-SattlerR 2010 A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42 137 141

15. NicholsonJKO'FlynnMPSadlerPJMacleodAFJuulSM 1984 Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J 217 365 375

16. BeckonertOKeunHEbbelsTBundyJHolmesE 2007 Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols 2 2692 2703

17. NicholsonJKLindonJCHolmesE 1999 ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29 1181 1189

18. Römisch-MarglWPrehnCBogumilRRöhringCSuhreK 2011 Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics 1 10

19. GiegerCGeistlingerLAltmaierEHrabé de AngelisMKronenbergF 2008 Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum. PLoS Genet 4 e1000282 doi:10.1371/journal.pgen.1000282

20. TanGDNevilleMJLiveraniEHumphreysSMCurrieJM 2006 The in vivo effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. Diabetologia 49 158 168

21. SlatkinM 2008 Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nature reviews. Genetics 9 477 485

22. ChambersJZhangWLordGvan der HarstPLawlorD 2010 Genetic loci influencing kidney function and chronic kidney disease. Nat Genet 42 373 375

23. KöttgenAPattaroCBögerCFuchsbergerCOldenM 2010 New loci associated with kidney function and chronic kidney disease. Nat Genet 42 376 384

24. WishartDKnoxCGuoACEisnerRYoungN 2009 HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37 D603 610

25. CloarecODumasM-ECraigABartonRTryggJ 2005 Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77 1282 1289

26. NicholsonJKFoxallPJSpraulMFarrantRDLindonJC 1995 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67 793 811

27. GöringHHTerwilligerJDBlangeroJ 2001 Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69 1357 1369

28. HindorffLSethupathyPJunkinsHRamosEMehtaJ 2009 Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106 9362 9367

29. AltshulerDGibbsRPeltonenLDermitzakisESchaffnerS 2010 Integrating common and rare genetic variation in diverse human populations. Nature 467 52 58

30. ScheinfeldtLBiswasSMadeoyJConnellyCSchadtE 2009 Population genomic analysis of ALMS1 in humans reveals a surprisingly complex evolutionary history. Mol Biol Evol 26 1357 1367

31. SabetiPCSchaffnerSFFryBLohmuellerJVarillyP 2006 Positive natural selection in the human lineage. Science 312 New York, N.Y. 1614 1620

32. KumarPHenikoffSNgP 2009 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 4 1073 1081

33. RamenskyVBorkPSunyaevS 2002 Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30 3894 3900

34. KuhnRMKarolchikDZweigASWangTSmithKE 2009 The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 37 D755 761

35. PollardKHubiszMRosenbloomKSiepelA 2010 Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20 110 121

36. KelleyLSternbergM 2009 Protein structure prediction on the Web: a case study using the Phyre server. Nature protocols 4 363 371

37. WassMKelleyLSternbergM 2010 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38

38. SchadtEMolonyCChudinEHaoKYangX 2008 Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6 e107 doi:10.1371/journal.pbio.0060107

39. NicaAPartsLGlassDNisbetJBarrettA 2011 The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet 7 e1002003 doi:10.1371/journal.pgen.1002003

40. SuhreKMeisingerCDöringAAltmaierEBelcrediP 2010 Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5 e13953 doi:10.1371/journal.pone.0013953

41. NicholsonGRantalainenMMaherADLiJVMalmodinD 2011 Human metabolic profiles are stably controlled by genetic and environmental variation. Mol Syst Biol In press

42. HolmesELooRLStamlerJBictashMYapI 2008 Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453 396 400

43. HolmesEWilsonINicholsonJ 2008 Metabolic phenotyping in health and disease. Cell 134 714 717

44. SuhreKWallaschofskiHRafflerJFriedrichNHaringR 2011 A genome-wide association study of metabolic traits in human urine. Nat Genet 43 565 569

45. SmithJLWishnokJSDeenWM 1994 Metabolism and excretion of methylamines in rats. Toxicol Appl Pharmacol 125 296 308

46. ZeiselSHWishnokJSBlusztajnJK 1983 Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther 225 320 324

47. CashmanJCampKFakharzadehSFennesseyPHinesR 2003 Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Current drug metabolism 4 151 170

48. DumasM-EBartonRToyeACloarecOBlancherC 2006 Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103 12511 12516

49. WangZKlipfellEBennettBKoethRLevisonB 2011 Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 57 63

50. Al-WaizMAyeshRMitchellSCIdleJRSmithRL 1987 A genetic polymorphism of the N-oxidation of trimethylamine in humans. Clin Pharmacol Ther 42 588 594

51. Veiga-da-CunhaMTytecaDStroobantVCourtoyPOpperdoesF 2010 Molecular identification of NAT8 as the enzyme that acetylates cysteine S-conjugates to mercapturic acids. J Biol Chem 285 18888 18898

52. JuhansonPKeppKOrgEVeldreGKelgoP 2008 N-acetyltransferase 8, a positional candidate for blood pressure and renal regulation: resequencing, association and in silico study. BMC medical genetics 9 25

53. HarrisH 1953 Family studies on the urinary excretion of beta-aminoisobutyric acid. Annals of eugenics 18 43 49

54. van KuilenburgAMeinsmaRBekeEAssmannBRibesA 2004 beta-Ureidopropionase deficiency: an inborn error of pyrimidine degradation associated with neurological abnormalities. Hum Mol Genet 13 2793 2801

55. SpectorTWilliamsF 2006 The UK adult twin registry (TwinsUK). Twin Res 9 899 906

56. AlbertiKGZimmetPShawJ 2006 Metabolic syndrome - a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabetic medicine : a journal of the British Diabetic Association 23 469 480

57. 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 661 678

58. MarchiniJHowieBMyersSMcVeanGDonnellyP 2007 A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39 906 913

59. IrizarryRBolstadBCollinFCopeLHobbsB 2003 Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31

60. DaiMWangPBoydAKostovGAtheyB 2005 Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucl. Acids Res. 33 e175 e175

61. BogumilRKoalTWeinbergerKMDS 2008 Massenspektrometrische Analyse von Blutplasma im Kitformat Laborwelt 2 17 23

62. U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) 2001 Guidance for Industry. Bioanalytical Method Validation

63. NicholsonJKBuckinghamMJSadlerPJ 1983 High resolution 1H n.m.r. studies of vertebrate blood and plasma. Biochem J 211 605 615

64. R Development Core Team 2010 R: A Language and Environment for Statistical Computing

65. JohnstoneISilvermanB 2005 Empirical Bayes selection of wavelet thresholds. Annals of Statistics 33 1700 1752

66. DieterleFRossASchlotterbeckGSennH 2006 Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78 4281 4290

67. BrownLCaiTDasguptaA 2001 Interval estimation for a binomial proportion. Statistical Science 16 101 117

68. VisscherPBenyaminBWhiteI 2004 The use of linear mixed models to estimate variance components from data on twin pairs by maximum likelihood. Twin research: the official journal of the International Society for Twin Studies 7 670 674

69. NealeMCCardonLR 1992 Methodology for genetic studies of twins and families: Dordrecht: Kluwer Academic Publishers

70. RijsdijkFShamP 2002 Analytic approaches to twin data using structural equation models. Briefings in bioinformatics 3 119 133

71. GelmanA 2006 Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1 515 533

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#