Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at and a Potential Indicator of Esophageal Adenocarcinoma Development
Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming.
Vyšlo v časopise:
Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at and a Potential Indicator of Esophageal Adenocarcinoma Development. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002277
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002277
Souhrn
Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming.
Zdroje
1. BerkesCABergstromDAPennBHSeaverKJKnoepflerPS 2004 Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14 465 477
2. DeckerTPasca di MaglianoMMcManusSSunQBoniferC 2009 Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30 508 520
3. HoogenkampMLichtingerMKrysinskaHLancrinCClarkeD 2009 Early chromatin unfolding by RUNX1 - a molecular explanation for differential reqduring specification versus maintenance of the hematopoietic gene expression program. Blood Journal online prepublished
4. LangDLuMMHuangLEnglekaKAZhangM 2005 Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433 884 887
5. YuLMorseRH 1999 Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol Cell Biol 19 5279 5288
6. ZaretK 1999 Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Devel Biol 209 1 10
7. SlackJM 2007 Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8 369 378
8. KaestnerKH 2005 The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle 4 1146 1148
9. KaestnerKHHiemischHLuckowBSchutzG 1994 The HNF-3 gene family of transcription factors in mice: gene structure, cDNA sequence, and mRNA distribution. Genomics 20 377 385
10. AngS-LRossantJ 1994 HNF-3β is essential for node and notochord formation in mouse development. Cell 78 561 574
11. AngS-LWierdaAWongDStevensKACascioS 1993 The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119 1301 1315
12. WeinsteinDCRuiz i AltabaAChenWSHoodlessPPreziosoVR 1994 The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell 78 575 588
13. LeeCSFriedmanJRFulmerJTKaestnerKH 2005 The initiation of liver development is dependent on Foxa transcription factors. Nature 435 944 947
14. BossardPZaretKS 1998 GATA transcription factors as potentiators of gut endoderm differentiation. Development 125 4909 4917
15. BossardPZaretKS 2000 Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's Diverticulum. Development 127 4915 4923
16. GualdiRBossardPZhengMHamadaYColemanJR 1996 Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10 1670 1682
17. CirilloLLinFRCuestaIJarnikMFriedmanD 2002 Opening of compacted chromatin by early developmental transcription factors HNF3 (FOXA) and GATA-4. Molecular Cell 9 279 289
18. CarrollJSLiuXSBrodskyASLiWMeyerCA 2005 Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 33 43
19. LupienMEeckhouteJMeyerCAWangQZhangY 2008 FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132 958 970
20. YuXGuptaAWangYSuzukiKMirosevichJ 2005 Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann N Y Acad Sci 1061 77 93
21. BeckFErlerTRussellAJamesR 1995 Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn 204 219 227
22. SilbergDGSwainGPSuhERTraberPG 2000 Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119 961 971
23. GaoNWhitePKaestnerKH 2009 Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 16 588 599
24. EdaAOsawaHSatohKYanakaIKihiraK 2003 Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa. J Gastroenterol 38 14 22
25. MoonsLMBaxDAKuipersEJVan DekkenHHaringsmaJ 2004 The homeodomain protein CDX2 is an early marker of Barrett's oesophagus. J Clin Pathol 57 1063 1068
26. PhillipsRWFriersonHFJrMoskalukCA 2003 Cdx2 as a marker of epithelial intestinal differentiation in the esophagus. Am J Surg Pathol 27 1442 1447
27. BochkisIMRubinsNEWhitePFurthEEFriedmanJR 2008 Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 14 828 836
28. WederellEDBilenkyMCullumRThiessenNDagpinarM 2008 Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 36 4549 4564
29. ChayaDHayamizuTBustinMZaretKS 2001 Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J Biol Chem 276 44385 44389
30. JohnsonWELiWMeyerCAGottardoRCarrollJS 2006 Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 103 12457 12462
31. TutejaGWhitePSchugJKaestnerKH 2009 Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res 37 e113
32. KrivanWWassermanWW 2001 A predictive model for regulatory sequences directing liver-specific transcription. Genome Res 11 1559 1566
33. KyrmiziIHatzisPKatrakiliNTroncheFGonzalezFJ 2006 Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev 20 2293 2305
34. LiuMLeeBHMathewsMB 1999 Involvement of RFX1 protein in the regulation of the human proliferating cell nuclear antigen promoter. J Biol Chem 274 15433 15439
35. LubelskyYReuvenNShaulY 2005 Autorepression of rfx1 gene expression: functional conservation from yeast to humans in response to DNA replication arrest. Mol Cell Biol 25 10665 10673
36. AnisfeldAMKast-WoelbernHRMeyerMEJonesSAZhangY 2003 Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem 278 20420 20428
37. FeltkampDWiebelFFAlbertiSGustafssonJA 1999 Identification of a novel DNA binding site for nuclear orphan receptor OR1. J Biol Chem 274 10421 10429
38. FrankCMakkonenHDunlopTWMatilainenMVaisanenS 2005 Identification of pregnane X receptor binding sites in the regulatory regions of genes involved in bile acid homeostasis. J Mol Biol 346 505 519
39. LaffitteBAKastHRNguyenCMZavackiAMMooreDD 2000 Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275 10638 10647
40. BenahmedFGrossIGauntSJBeckFJehanF 2008 Multiple regulatory regions control the complex expression pattern of the mouse Cdx2 homeobox gene. Gastroenterology 1238 1247 e1231–1233
41. GauntSJDrageDTrubshawRC 2005 cdx4/lacZ and cdx2/lacZ protein gradients formed by decay during gastrulation in the mouse. Int J Dev Biol 49 901 908
42. HinoiTAkyolATheisenBKFergusonDOGreensonJK 2007 Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67 9721 9730
43. KnowlesBBHoweCCAdenDP 1980 Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209 497 499
44. WestonAPBadrASHassaneinRS 1999 Prospective multivariate analysis of clinical, endoscopic, and histological factors predictive of the development of Barrett's multifocal high-grade dysplasia or adenocarcinoma. Am J Gastroenterol 94 3413 3419
45. HaradaHNakagawaHOyamaKTakaokaMAndlCD 2003 Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol Cancer Res 1 729 738
46. YuWYSlackJMToshD 2005 Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 284 157 170
47. WangHChenJHollisterKSowersLCFormanBM 1999 Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3 543 553
48. HuXLiSWuJXiaCLalaDS 2003 Liver X receptors interact with corepressors to regulate gene expression. Mol Endocrinol 17 1019 1026
49. KazumoriHIshiharaSRumiMAKadowakiYKinoshitaY 2006 Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett's epithelium. Gut 55 16 25
50. CrestaniMSadeghpourAStroupDGalliGChiangJY 1998 Transcriptional activation of the cholesterol 7alpha-hydroxylase gene (CYP7A) by nuclear hormone receptors. J Lipid Res 39 2192 2200
51. StroupDCrestaniMChiangJY 1997 Orphan receptors chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and retinoid X receptor (RXR) activate and bind the rat cholesterol 7alpha-hydroxylase gene (CYP7A). J Biol Chem 272 9833 9839
52. ColleypriestBJFarrantJMSlackJMToshD 2010 The role of Cdx2 in Barrett's metaplasia. Biochem Soc Trans 38 364 369
53. EeckhouteJCarrollJSGeistlingerTRTorres-ArzayusMIBrownM 2006 A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20 2513 2526
54. YamaguchiNItoEAzumaSHonmaRYanagisawaY 2008 FoxA1 as a lineage-specific oncogene in luminal type breast cancer. Biochem Biophys Res Commun 365 711 717
55. LinLMillerCTContrerasJIPrescottMSDagenaisSL 2002 The hepatocyte nuclear factor 3 alpha gene, HNF3alpha (FOXA1), on chromosome band 14q13 is amplified and overexpressed in esophageal and lung adenocarcinomas. Cancer Res 62 5273 5279
56. KongJCrisseyMAFunakoshiSKreindlerJLLynchJP 2011 Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS ONE 6 e18280 doi:10.1371/journal.pone.0018280
57. KongJNakagawaHIsariyawongseBKFunakoshiSSilbergDG 2009 Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis 30 122 130
58. LohrMKloppelGMaisonneuvePLowenfelsABLuttgesJ 2005 Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia 7 17 23
59. FrankelRHBayonaWKoslowMNewcombEW 1992 p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52 1427 1433
60. RowanAJLamlumHIlyasMWheelerJStraubJ 2000 APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc Natl Acad Sci U S A 97 3352 3357
61. ChenLSmithLJohnsonMRWangKDiasioRB 2000 Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells. J Biol Chem 275 32227 32233
62. ReinholdWEmensLItkesABlakeMIchinoseI 1995 The myc intron-binding polypeptide associates with RFX1 in vivo and binds to the major histocompatibility complex class II promoter region, to the hepatitis B virus enhancer, and to regulatory regions of several distinct viral genes. Mol Cell Biol 15 3041 3048
63. OhashiYUedaMKawaseTKawakamiYTodaM 2004 Identification of an epigenetically silenced gene, RFX1, in human glioma cells using restriction landmark genomic scanning. Oncogene 23 7772 7779
64. PohlHWelchHG 2005 The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 97 142 146
65. EmeryPDurandBMachBReithW 1996 RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res 24 803 807
66. GajiwalaKSChenHCornilleFRoquesBPReithW 2000 Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403 916 921
67. FrankelNDavisGKVargasDWangSPayreF 2010 Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466 490 493
68. HongJWHendrixDALevineMS 2008 Shadow enhancers as a source of evolutionary novelty. Science 321 1314
69. ConsortiumEPBirneyEStamatoyannopoulosJADuttaAGuigoR 2007 Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 799 816
70. SandelinAAlkemaWEngstromPWassermanWWLenhardB 2004 JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32 D91 94
71. SiepelABejeranoGPedersenJSHinrichsASHouM 2005 Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15 1034 1050
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Evolutionarily Conserved Longevity Determinants HCF-1 and SIR-2.1/SIRT1 Collaborate to Regulate DAF-16/FOXO
- Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways
- Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD
- MicroRNA Predictors of Longevity in