Sequence Conservation and Functional Constraint on Intergenic Spacers in Reduced Genomes of the Obligate Symbiont
Analyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements. The genomes of Buchnera and other small genome symbionts display biased nucleotide compositions and high rates of sequence evolution and contain few recognizable regulatory elements. However, IGS lengths are highly correlated across divergent Buchnera genomes, suggesting the presence of functional elements. To identify functional regions within the IGSs, we sequenced two Buchnera genomes (from aphid species Uroleucon ambrosiae and Acyrthosiphon kondoi) and applied a phylogenetic footprinting approach to alignments of orthologous IGSs from a total of eight Buchnera genomes corresponding to six aphid species. Inclusion of these new genomes allowed comparative analyses at intermediate levels of divergence, enabling the detection of both conserved elements and previously unrecognized pseudogenes. Analyses of these genomes revealed that 232 of 336 IGS alignments over 50 nucleotides in length displayed substantial sequence conservation. Conserved alignment blocks within these IGSs encompassed 88 Shine-Dalgarno sequences, 55 transcriptional terminators, 5 Sigma-32 binding sites, and 12 novel small RNAs. Although pseudogene formation, and thus IGS formation, are ongoing processes in these genomes, a large proportion of intergenic spacers contain functional sequences.
Vyšlo v časopise:
Sequence Conservation and Functional Constraint on Intergenic Spacers in Reduced Genomes of the Obligate Symbiont. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002252
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002252
Souhrn
Analyses of genome reduction in obligate bacterial symbionts typically focus on the removal and retention of protein-coding regions, which are subject to ongoing inactivation and deletion. However, these same forces operate on intergenic spacers (IGSs) and affect their contents, maintenance, and rates of evolution. IGSs comprise both non-coding, non-functional regions, including decaying pseudogenes at varying stages of recognizability, as well as functional elements, such as genes for sRNAs and regulatory control elements. The genomes of Buchnera and other small genome symbionts display biased nucleotide compositions and high rates of sequence evolution and contain few recognizable regulatory elements. However, IGS lengths are highly correlated across divergent Buchnera genomes, suggesting the presence of functional elements. To identify functional regions within the IGSs, we sequenced two Buchnera genomes (from aphid species Uroleucon ambrosiae and Acyrthosiphon kondoi) and applied a phylogenetic footprinting approach to alignments of orthologous IGSs from a total of eight Buchnera genomes corresponding to six aphid species. Inclusion of these new genomes allowed comparative analyses at intermediate levels of divergence, enabling the detection of both conserved elements and previously unrecognized pseudogenes. Analyses of these genomes revealed that 232 of 336 IGS alignments over 50 nucleotides in length displayed substantial sequence conservation. Conserved alignment blocks within these IGSs encompassed 88 Shine-Dalgarno sequences, 55 transcriptional terminators, 5 Sigma-32 binding sites, and 12 novel small RNAs. Although pseudogene formation, and thus IGS formation, are ongoing processes in these genomes, a large proportion of intergenic spacers contain functional sequences.
Zdroje
1. McCutcheonJP 2010 The bacterial essence of tiny symbiont genomes. Curr Opin Microbiol 13 73 78
2. TamasIKlassonLNäslundKCanbäckBErikssonAS 2002 50 million years of genomic stasis in endosymbiotic bacteria. Science 296 2376 2379
3. van HamRCHJKamerbeekJPalaciosCRausellCAbascalF 2003 Reductive evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 100 581 586
4. DegnanPHLazarusABWernegreenJJ 2005 Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15 1023 1033
5. McCutcheonJPMoranNA 2010 Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2 708 718
6. MiraAOchmanHMoranNA 2001 Deletional bias and the evolution of bacterial genomes. Trends Genet 17 589 596
7. KuoC-HMoranNAOchmanH 2009 The consequences of genetic drift for bacterial genome complexity. Genome Res 19 1450 1454
8. ZientzEDandekarTGrossR 2004 Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68 745 770
9. McCutcheonJMMoranNA 2007 Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104 19392 19397
10. MoranNAMcCutcheonJPNakabachiA 2008 Evolution and genomics of heritable bacterial symbionts. Annu Rev Genet 42 165 190
11. MoranNAMiraA 2001 The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol 2 RESEARCH0054
12. DunbarHEWilsonACFergusonNRMoranNA 2007 Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5 e96 doi:10.1371/journal.pbio.0050096
13. WilcoxJLDunbarHEWolfingerRDMoranNA 2003 Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol Microbiol 48 1491 1500
14. MoranNADunbarHEWilcoxJ 2005 Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont, Buchnera aphidicola. J Bacteriol 187 4229 4237
15. ShigenobuSWatanabeHHattoriMSakakiYIshikawaH 2000 Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407 81 86
16. Perez-BrocalVGilRRamosSLamelasAPostigoM 2006 A small microbial genome: The end of a long symbiotic relationship? Science 314 312 313
17. MoranNAMcLaughlinHJSorekR 2009 The dynamics and timescale of ongoing genomic erosion in symbiotic bacteria. Science 323 379 382
18. KomakiKIshikawaH 1999 Intracellular bacterial symbionts of aphids possess many genomes per bacterium. J Mol Evol 48 717 722
19. CiliaMTamborindeguyCFishTHoweKThannhauserTW 2011 Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein expression to circulative polerovirus transmission. J Virology 85 2148 2166
20. von DohlenCDMoranNA 2000 Molecular data support a rapid radiation of aphid radiation of aphids in the Cretaceous and multiple origins of host alternation. Biol J Linnean Soc 71 689 717
21. Martinez-TorresDBuadesCLatorreAMoyaA 2001 Molecular systematics of aphids and their primary endosymbionts. Mol Phyl Evol 20 437 449
22. HansenAKMoranNA 2011 Aphid genome expression reveals host symtbion cooperation in the production of amino acids. Proc Natl Acad Sci U S A 108 2849 2854
23. CliftenPSudarsanamPDesikanAFultonLFultonB 2003 Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301 71 76
24. ZhangAGersteinM 2003 Of mice and men: phylogenetic footprinting aids the discovery of regulatory elements. J Biol 2 11.1 11.4
25. MoranNA 1996 Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93 2873 2878
26. MiraAMoranN 2002 Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microbial Ecol 44 137 143
27. WilkinsonTLFukatsuTIshikawaH 2003 Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct Dev 32 241 245
28. BernaysEAKleinB 2002 Quantifying the symbiont contribution to essential amino acids in aphids: the importance of tryptophan for Uroleucon ambrosiae. Physiol Ent 27 275 284
29. DegnanPHMoranNA 2008 Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol 17 916 929
30. WilliamsLEWernegreenJJ 2010 Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics 11 687
31. TamasIWernegreenJJNystedtBKauppinenSNDarbyAC 2008 Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci U S A 105 14934 14939
32. NakabachiAYamashitaATohHIshikawaHDunbarHE 2006 The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314 267
33. McCutcheonJPMcDonaldBRMoranNA 2009 Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5 e1000565 doi:10.1371/journal.pgen.1000565
34. CharlesHIshikawaH 1999 Physical and genetic map of the genome of Buchnera, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. J Mol Evol 48 142 150
35. WernegreenJJLazarusABDegnanPH 2002 Small genome of Candidatus Blochmannia, the bacterial endosymbiont of Camponotus, implies irreversible specialization to an intracellular lifestyle. Microbiology 148 2551 2556
36. GordonDAbajianCGreenP 1998 Consed: a graphical tool for sequence finishing. Genome Res 8 195 202
37. CamachoCCoulourisGAvagyanVMaNPapadopoulosJ 2009 BLAST+: architecture and applications. BMC Bioinformatics 10 421
38. DegnanPHYuYSisnerosNWingRAMoranNA 2009 Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A 106 9063 9068
39. HyattDChenGLLocascioPFLandMLLarimerFW 2010 Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11 119
40. LoweTMEddySR 1997 tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955 964
41. KeselerIMBonavides-MartínezCCollado-VidesJGama-CastroSGunsalusRP 2009 EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37 D464 D470
42. DarlingAEMauBPernaNT 2010 progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5 e11147 doi:10.1371/journal.pone.0011147
43. KatohKTohH 2008 Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9 286 298
44. YangZ 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556
45. StamatakisA 2006 RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690
46. SandersonMJ 2003 r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19 301 302
47. ClarkMAMoranNABaumannP 1999 Sequence evolution in bacterial endosymbionts having extreme base composition. Mol Biol Evol 16 1586 1598
48. RonquistFHuelsenbeckJP 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 1572 1574
49. AnandamPTorarinssonERuzzoWL 2009 Multiperm: shuffling multiple sequence alignments while approximately preserving dinucleotide frequencies. Bioinformatics 25 668 669
50. SuzekBEErmolaevaMDSchreiberMSalzbergSL 2001 A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 17 1123 1130
51. KingsfordCLAyanbuleKSalzbergSL 2007 Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8 R22
52. WashietlSHofackerILStadlerPF 2005 Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102 2454 2459
53. HofackerILFontanaWStadlerPFBonhoefferLSTackerM 1994 Fast folding and comparison of RNA secondary structures. Monatsh Chem 125 167 188
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 9
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Evolutionarily Conserved Longevity Determinants HCF-1 and SIR-2.1/SIRT1 Collaborate to Regulate DAF-16/FOXO
- Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways
- Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD
- MicroRNA Predictors of Longevity in