#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Separation of Recombination and SOS Response in RecA Suggests LexA Interaction Sites


RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.


Vyšlo v časopise: Separation of Recombination and SOS Response in RecA Suggests LexA Interaction Sites. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002244
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002244

Souhrn

RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.


Zdroje

1. RaddingCM 1981 Recombination activities of E. coli recA protein. Cell 25 3 4

2. LusettiSLCoxMM 2002 The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71 71 100

3. CoxMM 2007 Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42 41 63

4. CoxMM 2007 Motoring along with the bacterial RecA protein. Nat Rev Mol Cell Biol 8 127 138

5. TamasIKlassonLCanbackBNaslundAKErikssonAS 2002 50 million years of genomic stasis in endosymbiotic bacteria. Science 296 2376 2379

6. SeitzEMBrockmanJPSandlerSJClarkAJKowalczykowskiSC 1998 RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev 12 1248 1253

7. ShinoharaAOgawaHOgawaT 1992 Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69 457 470

8. VamvakasSVockEHLutzWK 1997 On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol 27 155 174

9. KhannaKKJacksonSP 2001 DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27 247 254

10. FloryJTsangSSMuniyappaK 1984 Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc Natl Acad Sci U S A 81 7026 7030

11. YuXJacobsSAWestSCOgawaTEgelmanEH 2001 Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc Natl Acad Sci U S A 98 8419 8424

12. KuzminovA 1999 Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63 751 813 table of contents

13. KowalczykowskiSCDixonDAEgglestonAKLauderSDRehrauerWM 1994 Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58 401 465

14. KowalczykowskiSC 2000 Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25 156 165

15. CoxMM 1999 Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63 311 366

16. YasudaTMorimatsuKHoriiTNagataTOhmoriH 1998 Inhibition of Escherichia coli RecA coprotease activities by DinI. Embo J 17 3207 3216

17. LusettiSLVoloshinONInmanRBCamerini-OteroRDCoxMM 2004 The DinI protein stabilizes RecA protein filaments. J Biol Chem 279 30037 30046

18. DreesJCLusettiSLCoxMM 2004 Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state. J Biol Chem 279 52991 52997

19. StohlEABrockmanJPBurkleKLMorimatsuKKowalczykowskiSC 2003 Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278 2278 2285

20. VanLoockMSYuXYangSGalkinVEHuangH 2003 Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments. J Mol Biol 333 345 354

21. LusettiSLDreesJCStohlEASeifertHSCoxMM 2004 The DinI and RecX proteins are competing modulators of RecA function. J Biol Chem 279 55073 55079

22. RenzetteNGumlawNSandlerSJ 2007 DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12. Mol Microbiol 63 103 115

23. MorimatsuKKowalczykowskiSC 2003 RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11 1337 1347

24. ShanQBorkJMWebbBLInmanRBCoxMM 1997 RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265 519 540

25. WangTCChangHYHungJL 1993 Cosuppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutat Res 294 157 166

26. LittleJW 1991 Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73 411 421

27. Fernandez De HenestrosaAROgiTAoyagiSChafinDHayesJJ 2000 Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35 1560 1572

28. BurckhardtSEWoodgateRScheuermannRHEcholsH 1988 UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci U S A 85 1811 1815

29. NohmiTBattistaJRDodsonLAWalkerGC 1988 RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A 85 1816 1820

30. ShinagawaHIwasakiHKatoTNakataA 1988 RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci U S A 85 1806 1810

31. PhamPSeitzEMSavelievSShenXWoodgateR 2002 Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis. Proc Natl Acad Sci U S A 99 11061 11066

32. TangMShenXFrankEGO'DonnellMWoodgateR 1999 UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A 96 8919 8924

33. JiangQKarataKWoodgateRCoxMMGoodmanMF 2009 The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP. Nature 460 359 363

34. GodoyVGJaroszDFSimonSMAbyzovAIlyinV 2007 UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 28 1058 1070

35. JaroszDFBeuningPJCohenSEWalkerGC 2007 Y-family DNA polymerases in Escherichia coli. Trends Microbiol 15 70 77

36. MaulRWSuttonMD 2005 Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187 7607 7618

37. LittleJW 1984 Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci U S A 81 1375 1379

38. LittleJW 1993 LexA cleavage and other self-processing reactions. J Bacteriol 175 4943 4950

39. StoryRMWeberITSteitzTA 1992 The structure of the E. coli recA protein monomer and polymer. Nature 355 318 325

40. DattaSPrabuMMVazeMBGaneshNChandraNR 2000 Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res 28 4964 4973

41. DattaSKrishnaRGaneshNChandraNRMuniyappaK 2003 Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes. J Bacteriol 185 4280 4284

42. DattaSGaneshNChandraNRMuniyappaKVijayanM 2003 Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50 474 485

43. ConwayABLynchTWZhangYFortinGSFungCW 2004 Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11 791 796

44. RajanRBellCE 2004 Crystal structure of RecA from Deinococcus radiodurans: insights into the structural basis of extreme radioresistance. J Mol Biol 344 951 963

45. WuYHeYMoyaIAQianXLuoY 2004 Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol Cell 15 423 435

46. XingXBellCE 2004 Crystal structures of Escherichia coli RecA in a compressed helical filament. J Mol Biol 342 1471 1485

47. XingXBellCE 2004 Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. Biochemistry 43 16142 16152

48. QianXWuYHeYLuoY 2005 Crystal structure of Methanococcus voltae RadA in complex with ADP: hydrolysis-induced conformational change. Biochemistry 44 13753 13761

49. WuYQianXHeYMoyaIALuoY 2005 Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence. J Biol Chem 280 722 728

50. KrishnaRManjunathGPKumarPSuroliaAChandraNR 2006 Crystallographic identification of an ordered C-terminal domain and a second nucleotide-binding site in RecA: new insights into allostery. Nucleic Acids Res 34 2186 2195

51. ChenZYangHPavletichNP 2008 Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453 489 484

52. McGrewDAKnightKL 2003 Molecular design and functional organization of the RecA protein. Crit Rev Biochem Mol Biol 38 385 432

53. LichtargeOBourneHRCohenFE 1996 An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257 342 358

54. LuaRCLichtargeO PyETV: a PyMOL evolutionary trace viewer to analyze functional site predictions in protein complexes. Bioinformatics 26 2981 2982

55. WilkinsADLuaRErdinSWardRMLichtargeO Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation. Protein Sci 19 1296 1311

56. LichtargeOYamamotoKRCohenFE 1997 Identification of functional surfaces of the zinc binding domains of intracellular receptors. J Mol Biol 274 325 337

57. SowaMEHeWWenselTGLichtargeO 2000 A regulator of G protein signaling interaction surface linked to effector specificity. Proc Natl Acad Sci U S A 97 1483 1488

58. SowaMEHeWSlepKCKercherMALichtargeO 2001 Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat Struct Biol 8 234 237

59. MadabushiSGrossAKPhilippiAMengECWenselTG 2004 Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J Biol Chem 279 8126 8132

60. RajagopalanLPatelNMadabushiSGoddardJAAnjanV 2006 Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis. J Neurosci 26 12727 12734

61. RaviscioniMHeQSalicruEMSmithCLLichtargeO 2006 Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors. Proteins 64 1046 1057

62. ShenoySKDrakeMTNelsonCDHoutzDAXiaoK 2006 beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281 1261 1273

63. Ribes-ZamoraAMihalekILichtargeOBertuchAA 2007 Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 14 301 307

64. RajagopalanLPereiraFALichtargeOBrownellWE 2009 Identification of functionally important residues/domains in membrane proteins using an evolutionary approach coupled with systematic mutational analysis. Methods Mol Biol 493 287 297

65. RodriguezGJYaoRLichtargeOWenselTG Evolution-guided discovery and recoding of allosteric pathway specificity determinants in psychoactive bioamine receptors. Proc Natl Acad Sci U S A 107 7787 7792

66. LichtargeOWilkinsA Evolution: a guide to perturb protein function and networks. Curr Opin Struct Biol 20 351 359

67. BaameurFMorganDHYaoHTranTMHammittRA Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in beta 2-adrenergic receptor and rhodopsin phosphorylation. Mol Pharmacol 77 405 415

68. KobayashiHOgawaKYaoRLichtargeOBouvierM 2009 Functional rescue of beta-adrenoceptor dimerization and trafficking by pharmacological chaperones. Traffic 10 1019 1033

69. YaoHKristensenDMMihalekISowaMEShawC 2003 A Sensitive, Accurate, and Scalable Method to Identify Functional Sites in Protein Structures. J Mol Bio In Press

70. PenningtonJMRosenbergSM 2007 Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet 39 797 802

71. MorandPBlancoMDevoretR 1977 Characterization of lexB mutations in Escherichia coli K-12. J Bacteriol 131 572 582

72. RobertsJWRobertsCW 1981 Two mutations that alter the regulatory activity of E. coli recA protein. Nature 290 422 424

73. KawashimaHHoriiTOgawaTOgawaH 1984 Functional domains of Escherichia coli recA protein deduced from the mutational sites in the gene. Mol Gen Genet 193 288 292

74. HortnagelKVoloshinONKinalHHMaNSchaffer-JudgeC 1999 Saturation mutagenesis of the E. coli RecA loop L2 homologous DNA pairing region reveals residues essential for recombination and recombinational repair. J Mol Biol 286 1097 1106

75. LarminatFCazauxCGermanierMDefaisM 1992 New mutations in and around the L2 disordered loop of the RecA protein modulate recombination and/or coprotease activity. J Bacteriol 174 6264 6269

76. KonolaJTLoganKMKnightKL 1994 Functional characterization of residues in the P-loop motif of the RecA protein ATP binding site. J Mol Biol 237 20 34

77. LoganKMKnightKL 1993 Mutagenesis of the P-loop motif in the ATP binding site of the RecA protein from Escherichia coli. J Mol Biol 232 1048 1059

78. NguyenTTMuenchKABryantFR 1993 Inactivation of the recA protein by mutation of histidine 97 or lysine 248 at the subunit interface. J Biol Chem 268 3107 3113

79. MustardJALittleJW 2000 Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA. J Bacteriol 182 1659 1670

80. DutreixMMoreauPLBailoneAGalibertFBattistaJR 1989 New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol 171 2415 2423

81. WeisemannJMWeinstockGM 1988 Mutations at the cysteine codons of the recA gene of Escherichia coli. DNA 7 389 398

82. NastriHGKnightKL 1994 Identification of residues in the L1 region of the RecA protein which are important to recombination or coprotease activities. J Biol Chem 269 26311 26322

83. NastriHGGuzzoALangeCSWalkerGCKnightKL 1997 Mutational analysis of the RecA protein L1 region identifies this area as a probable part of the co-protease substrate binding site. Mol Microbiol 25 967 978

84. KelleyJAKnightKL 1997 Allosteric regulation of RecA protein function is mediated by Gln194. J Biol Chem 272 25778 25782

85. OgawaHOgawaT 1986 General recombination: functions and structure of RecA protein. Adv Biophys 21 135 148

86. KonolaJTNastriHGLoganKMKnightKL 1995 Mutations at Pro67 in the RecA protein P-loop motif differentially modify coprotease function and separate coprotease from recombination activities. J Biol Chem 270 8411 8419

87. KonolaJTGuzzoAGowJBWalkerGCKnightKL 1998 Differential cleavage of LexA and UmuD mediated by recA Pro67 mutants: implications for common LexA and UmuD binding sites on RecA. J Mol Biol 276 405 415

88. MazinAVKowalczykowskiSC 1998 The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. Embo J 17 1161 1168

89. KurumizakaHIkawaSSaraiAShibataT 1999 The mutant RecA proteins, RecAR243Q and RecAK245N, exhibit defective DNA binding in homologous pairing. Arch Biochem Biophys 365 83 91

90. KarlinSBrocchieriL 1996 Evolutionary conservation of RecA genes in relation to protein structure and function. J Bacteriol 178 1881 1894

91. RocaAICoxMM 1997 RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol 56 129 223

92. AiharaHItoYKurumizakaHTeradaTYokoyamaS 1997 An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing. J Mol Biol 274 213 221

93. KurumizakaHAiharaHIkawaSKashimaTBazemoreLR 1996 A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J Biol Chem 271 33515 33524

94. LusettiSLWoodEAFlemingCDModicaMJKorthJ 2003 C-terminal deletions of the Escherichia coli RecA protein. Characterization of in vivo and in vitro effects. J Biol Chem 278 16372 16380

95. TessmanESPetersonPK 1985 Isolation of protease-proficient, recombinase-deficient recA mutants of Escherichia coli K-12. J Bacteriol 163 688 695

96. WangTCSmithKC 1986 Inviability of dam recA and dam recB cells of Escherichia coli is correlated with their inability to repair DNA double-strand breaks produced by mismatch repair. J Bacteriol 165 1023 1025

97. GalkinVEBrittRLBaneLBYuXCoxMM Two modes of binding of DinI to RecA filament provide a new insight into the regulation of SOS response by DinI protein. J Mol Biol 408 815 824

98. YuXEgelmanEH 1993 The LexA repressor binds within the deep helical groove of the activated RecA filament. J Mol Biol 231 29 40

99. GalkinVEYuXBielnickiJNdjonkaDBellCE 2009 Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. J Mol Biol 385 779 787

100. CirzRTRomesbergFE 2007 Controlling mutation: intervening in evolution as a therapeutic strategy. Crit Rev Biochem Mol Biol 42 341 354

101. SmithPARomesbergFE 2007 Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat Chem Biol 3 549 556

102. WoodgateRRajagopalanMLuCEcholsH 1989 UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD and UmuD'. Proc Natl Acad Sci U S A 86 7301 7305

103. MillerJH 1972 Experiments in molecular genetics Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratoryxvi, 466

104. MihalekIResILichtargeO 2004 A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 336 1265 1282

105. MihalekIResILichtargeO 2006 Evolutionary trace report_maker: a new type of service for comparative analysis of proteins. Bioinformatics 22 1656 1657

106. EdgarRC 2004 MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5 113

107. MorganDHKristensenDMMittelmanDLichtargeO 2006 ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22 2049 2050

108. Schneidman-DuhovnyDInbarYNussinovRWolfsonHJ 2005 PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33 W363 367

109. LinLLLittleJW 1989 Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins. J Mol Biol 210 439 452

110. GoldbergRBBenderRAStreicherSL 1974 Direct selection for P1-sensitive mutants of enteric bacteria. J Bacteriol 118 810 814

111. FrankEGGonzalezMEnnisDGLevineASWoodgateR 1996 In vivo stability of the Umu mutagenesis proteins: a major role for RecA. J Bacteriol 178 3550 3556

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#