#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Conserved Regulation of p53 Network Dosage by MicroRNA–125b Occurs through Evolving miRNA–Target Gene Pairs


MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA–target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.


Vyšlo v časopise: Conserved Regulation of p53 Network Dosage by MicroRNA–125b Occurs through Evolving miRNA–Target Gene Pairs. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002242
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002242

Souhrn

MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA–target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.


Zdroje

1. LeeRCFeinbaumRLAmbrosV 1993 The C-elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75 843 854

2. BartelDPChenCZ 2004 Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Reviews Genetics 5 396 400

3. HeLHannonGJ 2004 MicroRNAs: Small RNAs with a big role in gene regulation (vol 5, pg 522 2004). Nature Reviews Genetics 5 522-+

4. InuiMMartelloGPiccoloS 2010 MicroRNA control of signal transduction. Nature Reviews Molecular Cell Biology 11 252 263

5. Lagos-QuintanaMRauhutRYalcinAMeyerJLendeckelW 2002 Identification of tissue-specific microRNAs from mouse. Current Biology 12 735 739

6. ChalfieMHorvitzHRSulstonJE 1981 Mutations that lead to reiterations in the cell lineages of C-elegans. Cell 24 59 69

7. LeMTNXieHMZhouBYChiaPHRizkP 2009 MicroRNA-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets. Molecular and Cellular Biology 29 5290 5305

8. RybakAFuchsHSmirnovaLBrandtCPohlEE 2008 A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology 10 987 993

9. GuoSQLuJSchlangerRZhangHWangJY 2010 MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences of the United States of America 107 14229 14234

10. O'ConnellRMChaudhuriAARaoDSGibsonWSJBalazsAB 2010 MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proceedings of the National Academy of Sciences of the United States of America 107 14235 14240

11. BousquetMQuelenCRosatiRMansat-De MasRLa StarzaR 2008 Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. Journal of Experimental Medicine 205 2499 2506

12. BousquetMHarrisMHZhouBLodishHF 2010 MicroRNA miR-125b causes leukemia. Proceedings of the National Academy of Sciences of the United States of America 107 21558 21563

13. ChapiroERussellLJStruskiSCaveHRadford-WeissI 2010 A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 24 1362 1364

14. KlusmannJHLiZBohmerKMarozAKochML 2010 miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes & Development 24 478 490

15. SonokiTIwanagaEMitsuyaHAsouN 2005 Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19 2009 2010

16. LeMTNTehCShyh-ChangNXieHMZhouBY 2009 MicroRNA-125b is a novel negative regulator of p53. Genes & Development 23 862 876

17. ZhouMLiuZXZhaoYHDingYLiuH 2010 MicroRNA-125b Confers the Resistance of Breast Cancer Cells to Paclitaxel through Suppression of Pro-apoptotic Bcl-2 Antagonist Killer 1 (Bak1) Expression. Journal of Biological Chemistry 285 21496 21507

18. ShiXBXueLYangJMaAHZhaoJ 2007 An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104 19983 19988

19. ScottGKGogaABhaumikDBergerCESullivanCS 2007 Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry 282 1479 1486

20. ShiLZhangJXPanTHZhouJFGongWY 2010 MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research 1312 120 126

21. XiaHFHeTZLiuCMCuiYSongPP 2009 MiR-125b Expression Affects the Proliferation and Apoptosis of Human Glioma Cells by Targeting Bmf. Cellular Physiology and Biochemistry 23 347 358

22. HofmannMHHeinrichJRadziwilGMoellingK 2009 A Short Hairpin DNA Analogous to miR-125b Inhibits C-Raf Expression, Proliferation, and Survival of Breast Cancer Cells. Molecular Cancer Research 7 1635 1644

23. MizunoYYagiKTokuzawaYKanesaki-YatsukaYSudaT 2008 miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochemical and Biophysical Research Communications 368 267 272

24. ViswanathanSPowersJEinhornWHoshidaYNgT 2009 Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics 41 843 848

25. LevineAJ 1997 p53, the cellular gatekeeper for growth and division. Cell 88 323 331

26. AgarwalMLTaylorWRChernovMVChernovaOBStarkGR 1998 The p53 network. Journal of Biological Chemistry 273 1 4

27. MayoLDDonnerDB 2002 The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends in Biochemical Sciences 27 462 467

28. HeXYHeLHannonGJ 2007 The guardian's little helper: MicroRNAs in the p53 tumor suppressor network. Cancer Research 67 11099 11101

29. SiuDCLauranceM 2004 Rapid generations of de novo biological pathways from large-scale gene expression data using the Ingenuity Pathways Analysis application. Proceedings of the American Association for Cancer Research Annual Meeting 45 756

30. LimYPLimTTChanYLSongACMYeoBH 2007 The p53 knowledgebase: an integrated information resource for p53 research. Oncogene 26 1517 1521

31. LewisBPBurgeCBBartelDP 2005 Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120 15 20

32. Griffiths-JonesSSainiHKvan DongenSEnrightAJ 2008 miRBase: tools for microRNA genomics. Nucleic Acids Research 36 D154 D158

33. Shen-OrrSSMiloRManganSAlonU 2002 Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31 64 68

34. MiloRShen-OrrSItzkovitzSKashtanNChklovskiiD 2002 Network motifs: Simple building blocks of complex networks. Science 298 824 827

35. BoyerLALeeTIColeMFJohnstoneSELevineSS 2005 Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 947 956

36. SwiersGPatientRLooseM 2006 Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Developmental Biology 294 525 540

37. O'DonnellKAWentzelEAZellerKIDangCVMendellJT 2005 c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435 839 843

38. ManganSAlonU 2003 Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences of the United States of America 100 11980 11985

39. ManganSItzkovitzSZaslaverAAlonU 2006 The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. Journal of Molecular Biology 356 1073 1081

40. KaplanSBrenADekelEAlonU 2008 The incoherent feed-forward loop can generate non-monotonic input functions for genes. Molecular Systems Biology 4

41. HornsteinEShomronN 2006 Canalization of development by microRNAs. Nature Genetics 38 S20 S24

42. WuCIShenYTangT 2009 Evolution under canalization and the dual roles of microRNAs-A hypothesis. Genome Research 19 734 743

43. OsellaMBosiaCCoráDCaselleM 2011 The Role of Incoherent MicroRNA-Mediated Feedforward Loops in Noise Buffering. PLoS Comput Biol 7 e1001101 doi:10.1371/journal.pcbi.1001101

44. CilibertiSMartinOCWagnerA 2007 Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput Biol 3 e15 doi:10.1371/journal.pcbi.0030015

45. WagnerA 2005 Circuit topology and the evolution of robustness in two-gene circadian oscillators. Proceedings of the National Academy of Sciences of the United States of America 102 11775 11780

46. TsangJZhuJvan OudenaardenA 2007 MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell 26 753 767

47. WaddingtonCH 1959 Canalization of development and genetic assimilation of acquired characters. Nature 183 1654 1655

48. StefaniGSlackFJ 2008 Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology 9 219 230

49. KennellJAGerinIMacDougaldOACadiganKM 2008 The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America 105 15417 15422

50. PolisenoLSalmenaLZhangJWCarverBHavemanWJ 2010 A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465 1033-U1090

51. Nuesslein-VolhardCDahmR 2002 Zebrafish: A practical approach. Zebrafish: A practical approach: i-xviii, 1-303

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#