#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparative and Functional Genomics of PD630 for Biofuels Development


The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.


Vyšlo v časopise: Comparative and Functional Genomics of PD630 for Biofuels Development. PLoS Genet 7(9): e32767. doi:10.1371/journal.pgen.1002219
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002219

Souhrn

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.


Zdroje

1. McLeodMPWarrenRLHsiaoWWArakiNMyhreM 2006 The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103 15582 15587

2. AlvarezHMMayerFFabritiusDSteinbuchelA 1996 Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165 377 386

3. AlvarezHMSteinbuchelA 2002 Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60 367 376

4. HernandezMMohnWMartinezERostEAlvarezA 2008 Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC genomics 9 600

5. KurosawaKBoccazziPde AlmeidaNMSinskeyAJ 2010 High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. Journal of Biotechnology 147 212 218

6. HughesJArmitageYCSymesKC 1998 Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74 107 118

7. SetoMKimbaraKShimuraMHattaTFukudaM 1995 A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 61 3353 3358

8. RobrockKRMohnWWEltisLDAlvarez-CohenL 2010 Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol Bioeng

9. GoncalvesERHaraHMiyazawaDDaviesJEEltisLD 2006 Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72 6183 6193

10. MathieuJMMohnWWEltisLDLeBlancJCStewartGR 2010 7-ketocholesterol catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76 352 355

11. PuglisiECahillMJLessardPACapriESinskeyAJ 2010 Transcriptional response of Rhodococcus aetherivorans I24 to polychlorinated biphenyl-contaminated sediments. Microb Ecol 60 505 515

12. PeoplesOPSinskeyAJ 1989 Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). Journal of Biological Chemistry 264 15298 15303

13. SlaterSCVoigeWHDennisDE 1988 Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology 170 4431 4436

14. JendrossekD 2009 Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes). J Bacteriol 191 3195 3202

15. RajakumariSGrillitschKDaumG 2008 Synthesis and turnover of non-polar lipids in yeast. Progress in Lipid Research 47 157 171

16. AlvarezHMAS 2010 Biology of Rhodococcus. Microbiology Monographs 16 263 289

17. ArgyrouAVettingMBlanchardJ 2007 New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. Journal of the American Chemical Society 129 9582 9583

18. TimminsGDereticV 2006 Mechanisms of action of isoniazid. Molecular Microbiology 62 1220 1227

19. RamanKRajagopalanPChandraN 2005 Flux Balance Analysis of Mycolic Acid Pathway: Targets for Anti-Tubercular Drugs. PLoS Comput Biol 1 e46 doi:10.1371/journal.pcbi.0010046

20. ZimhonyOCoxJWelchJVilchezeCJacobsW 2000 Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Medicine 6 1043 1047

21. SchweizerEHofmannJ 2004 Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiology and molecular biology reviews: MMBR 68 501 517

22. SutcliffeIC 1998 Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek 74 49 58

23. HsuF-FSoehlKTurkJHaasA 2011 Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Analytical Biochemistry 409 112 122

24. KarpPDPaleySMKrummenackerMLatendresseMDaleJM 2010 Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11 40 79

25. ArakakiAHuangYSkolnickJ 2009 EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics 10 107

26. KikuchiSRainwaterDLKolattukudyPE 1992 Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Archives of Biochemistry and Biophysics 295 318 326

27. VanceDEMitsuhashiOBlochK 1973 Purification and properties of the fatty acid synthetase from Mycobacterium phlei. J Biol Chem 248 2303 2309

28. WuMEisenJA 2008 A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9 R151

29. KalscheuerRSteinbuchelA 2003 A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278 8075 8082

30. AlvarezAFAlvarezHMKalscheuerRWaltermannMSteinbuchelA 2008 Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154 2327 2335

31. GandeRDoverLGKrumbachKBesraGSSahmH 2007 The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol 189 5257 5264

32. PortevinDde Sousa-D'AuriaCMontrozierHHoussinCStellaA 2005 The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280 8862 8874

33. GandeRGibsonKJBrownAKKrumbachKDoverLG 2004 Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 279 44847 44857

34. DiacovichLPeiruSKurthDRodriguezEPodestaF 2002 Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2). J Biol Chem 277 31228 31236

35. RainwaterDLKolattukudyPE 1985 Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. Journal of Biological Chemistry 260 616 623

36. MatsunagaIBhattAYoungDCChengTYEylesSJ 2004 Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200 1559 1569

37. SirakovaTDubeyVKimH-JCynamonMKolattukudyP 2003 The Largest Open Reading Frame (pks12) in the Mycobacterium tuberculosis Genome Is Involved in Pathogenesis and Dimycocerosyl Phthiocerol Synthesis. Infect Immun 71 3794 3801

38. SirakovaTDDubeyVSCynamonMHKolattukudyPE 2003 Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol 185 2999 3008

39. SirakovaTDThirumalaAKDubeyVSSprecherHKolattukudyPE 2001 The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. The Journal of Biological Chemistry 276 16833 16839

40. GrafeUReinhardtGKrebsDRothMBormannEJ 1982 Biochemical characteristics of non-streptomycin-producing mutants of Streptomyces griseus. II. Lipids and fatty acid composition of vegetative mycelia. Z Allg Mikrobiol 22 97 106

41. KaddorCBiermannKKalscheuerRSteinbuchelA 2009 Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84 143 155

42. EnrightAJKuninVOuzounisCA 2003 Protein families and TRIBES in genome sequence space. Nucleic Acids Res 31 4632 4638

43. ChopraTBanerjeeSGuptaSYadavGAnandS 2008 Novel Intermolecular Iterative Mechanism for Biosynthesis of Mycoketide Catalyzed by a Bimodular Polyketide Synthase. PLoS Biol 6 e163 doi:10.1371/journal.pbio.0060163

44. RainwaterDLKolattukudyPE 1983 Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. Journal of Biological Chemistry 258 2979 2985

45. HorswillAREscalante-SemerenaJC 1999 Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181 5615 5623

46. DavidFTienpontBSandraP 2008 Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. Journal of Separation Science 31 3395 3403

47. LenzOLudwigMSchubertTBurstelIGanskowS 2010 H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 11 1107 1119

48. PohlmannAFrickeWFReineckeFKusianBLiesegangH 2006 Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24 1257 1262

49. SchwartzEVoigtBZuhlkeDPohlmannALenzO 2009 A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9 5132 5142

50. ParkerSKCurtinKMVasilML 2007 Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. J Bacteriol 189 4153 4160

51. VimrEKalivodaKDeszoESteenbergenS 2004 Diversity of microbial sialic acid metabolism. Microbiology and molecular biology reviews: MMBR 68 132 153

52. SeveriEHoodDWThomasGH 2007 Sialic acid utilization by bacterial pathogens. Microbiology 153 2817 2822

53. PostDMungurRGibsonBMunsonR 2005 Identification of a novel sialic acid transporter in Haemophilus ducreyi. Infection and Immunity 73 6727 6735

54. SeveriEHosieAHawkheadJThomasG 2009 Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiology Letters 304 47 54

55. HunterRLOlsenMJagannathCActorJK 2006 Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am J Pathol 168 1249 1261

56. RengarajanJBloomBRRubinEJ 2005 Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102 8327 8332

57. PandeyAKSassettiCM 2008 Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105 4376 4380

58. HuYvan der GeizeRBesraGSGurchaSSLiuA 2010 3-Ketosteroid 9alpha-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75 107 121

59. YangXNesbittNMDubnauESmithISampsonNS 2009 Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 48 3819 3821

60. Van der GeizeRYamKHeuserTWilbrinkMHHaraH 2007 A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proceedings of the National Academy of Sciences 104 1947 1952

61. YamKCOkamotoSRobertsJNEltisLD 2011 Adventures in Rhodococcus - from steroids to explosives. Can J Microbiol 57 155 168

62. LomakinIBXiongYSteitzTA 2007 The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together. Cell 129 319 332

63. MacEachranDPPropheteMESinskeyAJ 2010 The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76 7217 7225

64. LessardPAO'BrienXMCurrieDHSinskeyAJ 2004 pB264, a small, mobilizable, temperature sensitive plasmid from Rhodococcus. BMC Microbiol 4 15

65. IsonoKMcIninchJDBorodovskyM 1994 Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark. DNA Res 1 263 269

66. DelcherALHarmonDKasifSWhiteOSalzbergSL 1999 Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27 4636 4641

67. DelcherALPhillippyACarltonJSalzbergSL 2002 Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30 2478 2483

68. BrudnoMDoCBCooperGMKimMFDavydovE 2003 LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13 721 731

69. FinnRDMistryJSchuster-BocklerBGriffiths-JonesSHollichV 2006 Pfam: clans, web tools and services. Nucleic Acids Res 34 D247 251

70. LagesenKHallinPRodlandEAStaerfeldtHHRognesT 2007 RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35 3100 3108

71. LoweTMEddySR 1997 tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955 964

72. Griffiths-JonesSMoxonSMarshallMKhannaAEddySR 2005 Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33 D121 124

73. RomeroPRKarpPD 2004 Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases. Bioinformatics 20 709 717

74. LeeTPaulsenIKarpP 2008 Annotation-based inference of transporter function. Bioinformatics 24 i259 i267

75. GreenMKarpP 2004 A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5 76

76. LiLStoeckertCRoosD 2003 OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research 13 2178 2189

77. KatohKKumaKTohHMiyataT 2005 MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33 511 518

78. StamatakisA 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690

79. WaterhouseAMProcterJBMartinDMClampMBartonGJ 2009 Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 1189 1191

80. Marchler-BauerALuSAndersonJBChitsazFDerbyshireMK 2011 CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39 D225 229

81. EdgarR 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32 1792 1797

82. LarkinMABlackshieldsGBrownNPChennaRMcGettiganPA 2007 Clustal W and Clustal X version 2.0. Bioinformatics 23 2947 2948

83. AbascalFZardoyaRPosadaD 2005 ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21 2104 2105

84. GuindonSGascuelO 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52 696 704

85. LetunicIBorkP 2007 Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23 127 128

86. MansourMP 2005 Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)–C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)]. J Chromatogr A 1097 54 58

87. SaeedAIBhagabatiNKBraistedJCLiangWSharovV 2006 TM4 microarray software suite. Methods Enzymol 411 134 193

88. de HoonMJImotoSNolanJMiyanoS 2004 Open source clustering software. Bioinformatics 20 1453 1454

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#