Distinct Translational Control in CD4 T Cell Subsets
Regulatory T cells expressing the transcription factor Foxp3 play indispensable roles for the induction and maintenance of immunological self-tolerance and immune homeostasis. Genome-wide mRNA expression studies have defined canonical signatures of T cell subsets. Changes in steady-state mRNA levels, however, often do not reflect those of corresponding proteins due to post-transcriptional mechanisms including mRNA translation. Here, we unveil a unique translational signature, contrasting CD4+Foxp3+ regulatory T (TFoxp3+) and CD4+Foxp3− non-regulatory T (TFoxp3−) cells, which imprints subset-specific protein expression. We further show that translation of eukaryotic translation initiation factor 4E (eIF4E) is induced during T cell activation and, in turn, regulates translation of cell cycle related mRNAs and proliferation in both TFoxp3− and TFoxp3+ cells. Unexpectedly, eIF4E also affects Foxp3 expression and thereby lineage identity. Thus, mRNA–specific translational control directs both common and distinct cellular processes in CD4+ T cell subsets.
Vyšlo v časopise:
Distinct Translational Control in CD4 T Cell Subsets. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003494
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003494
Souhrn
Regulatory T cells expressing the transcription factor Foxp3 play indispensable roles for the induction and maintenance of immunological self-tolerance and immune homeostasis. Genome-wide mRNA expression studies have defined canonical signatures of T cell subsets. Changes in steady-state mRNA levels, however, often do not reflect those of corresponding proteins due to post-transcriptional mechanisms including mRNA translation. Here, we unveil a unique translational signature, contrasting CD4+Foxp3+ regulatory T (TFoxp3+) and CD4+Foxp3− non-regulatory T (TFoxp3−) cells, which imprints subset-specific protein expression. We further show that translation of eukaryotic translation initiation factor 4E (eIF4E) is induced during T cell activation and, in turn, regulates translation of cell cycle related mRNAs and proliferation in both TFoxp3− and TFoxp3+ cells. Unexpectedly, eIF4E also affects Foxp3 expression and thereby lineage identity. Thus, mRNA–specific translational control directs both common and distinct cellular processes in CD4+ T cell subsets.
Zdroje
1. SchwanhausserB, BusseD, LiN, DittmarG, SchuchhardtJ, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342.
2. VogelC, Abreu RdeS, KoD, LeSY, ShapiroBA, et al. (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6: 400.
3. GygiSP, RochonY, FranzaBR, AebersoldR (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.
4. LuR, MarkowetzF, UnwinRD, LeekJT, AiroldiEM, et al. (2009) Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462: 358–362.
5. PerssonO, BrynnelU, LevanderF, WidegrenB, SalfordLG, et al. (2009) Proteomic expression analysis and comparison of protein and mRNA expression profiles in human malignant gliomas. Proteomics Clin Appl 3: 83–94.
6. WashburnMP, KollerA, OshiroG, UlaszekRR, PlouffeD, et al. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100: 3107–3112.
7. WongWF, KohuK, ChibaT, SatoT, SatakeM (2011) Interplay of transcription factors in T cell differentiation and function: the role of Runx. Immunology 132: 157–164.
8. SakaguchiS, OnoM, SetoguchiR, YagiH, HoriS, et al. (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 212: 8–27.
9. SakaguchiS, YamaguchiT, NomuraT, OnoM (2008) Regulatory T cells and immune tolerance. Cell 133: 775–787.
10. ZhuJ, PaulWE (2008) CD4 T cells: fates, functions, and faults. Blood 112: 1557–1569.
11. FeuererM, HillJA, KretschmerK, von BoehmerH, MathisD, et al. (2010) Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc Natl Acad Sci U S A 107: 5919–5924.
12. FontenotJD, RasmussenJP, GavinMA, RudenskyAY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6: 1142–1151.
13. FontenotJD, RasmussenJP, WilliamsLM, DooleyJL, FarrAG, et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.
14. GavinMA, RasmussenJP, FontenotJD, VastaV, ManganielloVC, et al. (2007) Foxp3-dependent programme of regulatory T cell differentiation. Nature 445: 771–775.
15. HillJA, FeuererM, TashK, HaxhinastoS, PerezJ, et al. (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27: 786–800.
16. GrolleauA, BowmanJ, Pradet-BaladeB, PuravsE, HanashS, et al. (2002) Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 277: 22175–22184.
17. Garcia-SanzJA, MikulitsW, LivingstoneA, LefkovitsI, MullnerEW (1998) Translational control: a general mechanism for gene regulation during T cell activation. FASEB J 12: 299–306.
18. MikulitsW, Pradet-BaladeB, HabermannB, BeugH, Garcia-SanzJA, et al. (2000) Isolation of translationally controlled mRNAs by differential screening. FASEB J 14: 1641–1652.
19. SonenbergN, HinnebuschAG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136: 731–745.
20. LarssonO, SonenbergN, NadonR (2010) Identification of differential translation in genome wide studies. Proc Natl Acad Sci U S A 107(50): 21487–21492.
21. LarssonO, SonenbergN, NadonR (2011) anota: analysis of differential translation in genome wide studies. Bioinformatics 27(10): 1440–1.
22. FeuererM, HillJA, MathisD, BenoistC (2009) Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10: 689–695.
23. KeeneJD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8: 533–543.
24. MukherjeeN, LagerPJ, FriedersdorfMB, ThompsonMA, KeeneJD (2009) Coordinated posttranscriptional mRNA population dynamics during T cell activation. Mol Syst Biol 5: 288.
25. HoganDJ, RiordanDP, GerberAP, HerschlagD, BrownPO (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6: e255 doi:10.1371/journal.pbio.0060255.
26. LuoW, FriedmanMS, SheddenK, HankensonKD, WoolfPJ (2009) GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10: 161.
27. LarssonO, LiS, IssaenkoOA, AvdulovS, PetersonM, et al. (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67: 6814–6824.
28. MamaneY, PetroulakisE, MartineauY, SatoTA, LarssonO, et al. (2007) Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2: e242 doi:10.1371/journal.pone.0000242.
29. DowlingRJ, TopisirovicI, AlainT, BidinostiM, FonsecaBD, et al. (2010) mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328: 1172–1176.
30. LarssonO, PerlmanDM, FanD, ReillyCS, PetersonM, et al. (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res 34: 4375–4386.
31. ColinaR, Costa-MattioliM, DowlingRJ, JaramilloM, TaiLH, et al. (2008) Translational control of the innate immune response through IRF-7. Nature 452: 323–328.
32. KimYY, Von WeymarnL, LarssonO, FanD, UnderwoodJM, et al. (2009) Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 69: 8455–8462.
33. Bour-JordanH, BluestoneJA (2009) Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 229: 41–66.
34. ThorntonAM, ShevachEM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296.
35. GhoshB, BenyumovAO, GhoshP, JiaY, AvdulovS, et al. (2009) Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem Biol 4: 367–377.
36. DelgoffeGM, KoleTP, ZhengY, ZarekPE, MatthewsKL, et al. (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30: 832–844.
37. SauerS, BrunoL, HertweckA, FinlayD, LeleuM, et al. (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105: 7797–7802.
38. NikolchevaT, PyronnetS, ChouSY, SonenbergN, SongA, et al. (2002) A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. J Clin Invest 110: 119–126.
39. VillarinoAV, KatzmanSD, GalloE, MillerO, JiangS, et al. (2011) Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 34: 50–60.
40. MaoX, GreenJM, SaferB, LindstenT, FredericksonRM, et al. (1992) Regulation of translation initiation factor gene expression during human T cell activation. J Biol Chem 267: 20444–20450.
41. FangL, WangH, ZhouL, YuD (2011) FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells. Toxicol Appl Pharmacol 251: 8–15.
42. HuangH, ReganKM, WangF, WangD, SmithDI, et al. (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A 102: 1649–1654.
43. OuyangW, BeckettO, MaQ, PaikJH, DePinhoRA, et al. (2010) Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11: 618–627.
44. ZhouL, ChongMM, LittmanDR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30: 646–655.
45. DaiM, WangP, BoydAD, KostovG, AtheyB, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
46. BoyleEI, WengS, GollubJ, JinH, BotsteinD, et al. (2004) TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20: 3710–3715.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
- HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages
- Female Bias in and Regulation by the Histone Demethylase KDM6A
- High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Isolates