#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Filamin and Phospholipase C-ε Are Required for Calcium Signaling in the Spermatheca


The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.


Vyšlo v časopise: Filamin and Phospholipase C-ε Are Required for Calcium Signaling in the Spermatheca. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003510
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003510

Souhrn

The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.


Zdroje

1. OrrAW, HelmkeBP, BlackmanBR, SchwartzMA (2006) Mechanisms of mechanotransduction. Dev Cell 10: 11–20 doi:10.1016/j.devcel.2005.12.006.

2. JaaloukDE, LammerdingJ (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10: 63–73 doi:10.1038/nrm2597.

3. GehlerS, BaldassarreM, LadY, LeightJL, WozniakMA, et al. (2009) Filamin A-beta1 integrin complex tunes epithelial cell response to matrix tension. Mol Biol Cell 20: 3224–3238 doi:10.1091/mbc.E08-12-1186.

4. ZhangH, LandmannF, ZahreddineH, RodriguezD, KochM, et al. (2011) A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471: 99–103 doi:10.1038/nature09765.

5. YinJ, KueblerWM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56: 1–18 doi:10.1007/s12013-009-9067-2.

6. Sharif-NaeiniR, FolgeringJHA, BichetD, DupratF, LauritzenI, et al. (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139: 587–596 doi:10.1016/j.cell.2009.08.045.

7. DuFortCC, PaszekMJ, WeaverVM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12: 308–319 doi:10.1038/nrm3112.

8. StosselTP, CondeelisJ, CooleyL, HartwigJH, NoegelA, et al. (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2: 138–145 doi:10.1038/35052082.

9. NakamuraF, OsbornTM, HarteminkCA, HartwigJH, StosselTP (2007) Structural basis of filamin A functions. J Cell Biol 179: 1011–1025 doi:10.1083/jcb.200707073.

10. FoxJW, LampertiED, EkşioğluYZ, HongSE, FengY, et al. (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21: 1315–1325.

11. TsutsumiS, MaekawaA, ObataM, MorganT, RobertsonS, et al. (2012) A Case of Boomerang Dysplasia with a Novel Causative Mutation in Filamin B: Identification of Typical Imaging Findings on Ultrasonography and 3D-CT Imaging. Fetal Diagn Ther doi:10.1159/000335687.

12. GuergueltchevaV, PeetersK, BaetsJ, Ceuterick-de GrooteC, MartinJJ, et al. (2011) Distal myopathy with upper limb predominance caused by filamin C haploinsufficiency. Neurology 77: 2105–2114 doi:10.1212/WNL.0b013e31823dc51e.

13. VattemiG, NeriM, PifferS, VicartP, GualandiF, et al. (2011) Clinical, morphological and genetic studies in a cohort of 21 patients with myofibrillar myopathy. Acta Myol 30: 121–126.

14. ZhouX, TianF, SandzénJ, CaoR, FlabergE, et al. (2007) Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc Natl Acad Sci USA 104: 3919–3924 doi:10.1073/pnas.0608360104.

15. Farrington-RockC, KirilovaV, Dillard-TelmL, BorowskyAD, ChalkS, et al. (2008) Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum Mol Genet 17: 631–641 doi:10.1093/hmg/ddm188.

16. DalkilicI, SchiendaJ, ThompsonTG, KunkelLM (2006) Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol Cell Biol 26: 6522–6534 doi:10.1128/MCB.00243-06.

17. SokolNS, CooleyL (1999) Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr Biol 9: 1221–1230.

18. LiMG, SerrM, EdwardsK, LudmannS, YamamotoD, et al. (1999) Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J Cell Biol 146: 1061–1074.

19. SokolNS, CooleyL (2003) Drosophila filamin is required for follicle cell motility during oogenesis. Developmental Biology 260: 260–272.

20. SchmollerKM, LielegO, BauschAR (2009) Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks. Biophys J 97: 83–89 doi:10.1016/j.bpj.2009.04.040.

21. NakamuraF, OsbornE, JanmeyPA, StosselTP (2002) Comparison of filamin A-induced cross-linking and Arp2/3 complex-mediated branching on the mechanics of actin filaments. J Biol Chem 277: 9148–9154 doi:10.1074/jbc.M111297200.

22. EhrlicherAJ, NakamuraF, HartwigJH, WeitzDA, StosselTP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478: 260–263 doi:10.1038/nature10430.

23. LadY, KiemaT, JiangP, PentikäinenOT, ColesCH, et al. (2007) Structure of three tandem filamin domains reveals auto-inhibition of ligand binding. EMBO J 26: 3993–4004 doi:10.1038/sj.emboj.7601827.

24. IthychandaSS, QinJ (2011) Evidence for multisite ligand binding and stretching of filamin by integrin and migfilin. Biochemistry 50: 4229–4231 doi:10.1021/bi2003229.

25. FuruikeS, ItoT, YamazakiM (2001) Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. FEBS Lett 498: 72–75.

26. PentikäinenU, YlänneJ (2009) The regulation mechanism for the auto-inhibition of binding of human filamin A to integrin. J Mol Biol 393: 644–657 doi:10.1016/j.jmb.2009.08.035.

27. KovacevicI, CramEJ (2010) FLN-1/filamin is required for maintenance of actin and exit of fertilized oocytes from the spermatheca in C. elegans. Dev Biol 347: 247–257 doi:10.1016/j.ydbio.2010.08.005.

28. DeMasoCR, KovacevicI, UzunA, CramEJ (2011) Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2. PLoS ONE 6: e22428 doi:10.1371/journal.pone.0022428.t004.

29. McCarterJ, BartlettB, DangT, SchedlT (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205: 111–128 doi:10.1006/dbio.1998.9109.

30. Lints R, Hall D (2009) Reproductive system, somatic gonad. WormAtlas. Available: http://www.wormatlas.org/hermaphrodite/somatic%20gonad/Somframeset.html. Accessed 21 June 2012.

31. McCarterJ, BartlettB, DangT, SchedlT (1997) Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 181: 121–143 doi:10.1006/dbio.1996.8429.

32. HubbardEJ, GreensteinD (2000) The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn 218: 2–22 doi:10.1002/(SICI)1097-0177(200005)218:1<2::AID-DVDY2>3.0.CO;2-W.

33. StromeS (1986) Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans. J Cell Biol 103: 2241 doi:10.1083/jcb.103.6.2241.

34. ClandininT (1998) Inositol Trisphosphate Mediates a RAS-Independent Response to LET-23 Receptor Tyrosine Kinase Activation in C. elegans. Cell 92: 523–533 doi:10.1016/S0092-8674(00)80945-9.

35. YinX, GowerNJD, BaylisHA, StrangeK (2004) Inositol 1,4,5-trisphosphate signaling regulates rhythmic contractile activity of myoepithelial sheath cells in Caenorhabditis elegans. Mol Biol Cell 15: 3938–3949 doi:10.1091/mbc.E04-03-0198.

36. Kim BuiY, SternbergPW (2002) Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 13: 1641–1651 doi:10.1091/mbc.02-01-0008.

37. OnoK, OnoS (2004) Tropomyosin and troponin are required for ovarian contraction in the Caenorhabditis elegans reproductive system. Mol Biol Cell 15: 2782–2793 doi:10.1091/mbc.E04-03-0179.

38. KariyaK-I, Kim BuiY, GaoX, SternbergPW, KataokaT (2004) Phospholipase Cepsilon regulates ovulation in Caenorhabditis elegans. Dev Biol 274: 201–210 doi:10.1016/j.ydbio.2004.06.024.

39. ShibatohgeM, KariyaKI, LiaoY, HuCD, WatariY, et al. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J Biol Chem 273: 6218–6222.

40. KelleyGG, ReksSE, OndrakoJM, SmrckaAV (2001) Phospholipase C(epsilon): a novel Ras effector. EMBO J 20: 743–754 doi:10.1093/emboj/20.4.743.

41. RheeSG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70: 281–312 doi:10.1146/annurev.biochem.70.1.281.

42. TaylorCW, ToveySC (2010) IP3 Receptors: Toward Understanding Their Activation. Cold Spring Harbor Perspectives in Biology 2: a004010–a004010 doi:10.1101/cshperspect.a004010.

43. FoskettJK, WhiteC, CheungKH, MakDOD (2007) Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews 87: 593–658 doi:10.1152/physrev.00035.2006.

44. WissmannA, InglesJ, MainsPE (1999) The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 209: 111–127 doi:10.1006/dbio.1999.9242.

45. PieknyAJ (2003) The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development 130: 5695–5704 doi:10.1242/dev.00807.

46. Hunt-NewburyR, ViveirosR, JohnsenR, MahA, AnastasD, et al. (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5: e237 doi:10.1371/journal.pbio.0050237.

47. BaylisHA, Vázquez-ManriqueRP (2011) Genetic analysis of IP3 and calcium signalling pathways in C. elegans. BBA - General Subjects 1–16 doi:10.1016/j.bbagen.2011.11.009.

48. WalkerDS, GowerNJD, LyS, BradleyGL, BaylisHA (2002) Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13: 1329–1337 doi:10.1091/mbc.01-08-0422.

49. YoshikawaF, MoritaM, MonkawaT, MichikawaT, FuruichiT, et al. (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271: 18277–18284.

50. TianL, HiresSA, MaoT, HuberD, ChiappeME, et al. (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6: 875–881 doi:10.1038/nmeth.1398.

51. XuS, ChisholmAD (2011) A Gαq-Ca2+ Signaling Pathway Promotes Actin-Mediated Epidermal Wound Closure in C. elegans. Current Biology 21: 1960–1967 doi:10.1016/j.cub.2011.10.050.

52. AltunZF, ChenB, WangZ-W, HallDH (2009) High resolution map of Caenorhabditis elegans gap junction proteins. Dev Dyn 238: 1936–1950 doi:10.1002/dvdy.22025.

53. StarichT, SheehanM, JadrichJ, ShawJ (2001) Innexins in C. elegans. Cell Commun Adhes 8: 311–314.

54. Vázquez-ManriqueRP, NagyAI, LeggJC, BalesOAM, LyS, et al. (2008) Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans. PLoS Genet 4: e1000043 doi:10.1371/journal.pgen.1000043.

55. EspeltMV, EstevezAY, YinX, StrangeK (2005) Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. The Journal of General Physiology 126: 379–392 doi:10.1085/jgp.200509355.

56. Dal SantoP, LoganMA, ChisholmAD, JorgensenEM (1999) The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98: 757–767.

57. IwasakiK, LiuDW, ThomasJH (1995) Genes that control a temperature-compensated ultradian clock in Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 10317–10321.

58. PieknyAJ, MainsPE (2002) Rho-binding kinase (LET-502) and myosin phosphatase (MEL-11) regulate cytokinesis in the early Caenorhabditis elegans embryo. J Cell Sci 115: 2271–2282.

59. PieknyAJ, WissmannA, MainsPE (2000) Embryonic morphogenesis in Caenorhabditis elegans integrates the activity of LET-502 Rho-binding kinase, MEL-11 myosin phosphatase, DAF-2 insulin receptor and FEM-2 PP2c phosphatase. Genetics 156: 1671–1689.

60. GallyC, WisslerF, ZahreddineH, QuintinS, LandmannF, et al. (2009) Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development 136: 3109–3119 doi:10.1242/dev.039412.

61. DiogonM, WisslerF, QuintinS, NagamatsuY, SookhareeaS, et al. (2007) The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development 134: 2469–2479 doi:10.1242/dev.005074.

62. VoetsT, NiliusB (2009) TRPCs, GPCRs and the Bayliss effect. EMBO J 28: 4–5 doi:10.1038/emboj.2008.261.

63. PlayfordMP, NurminenE, PentikainenOT, MilgramSL, HartwigJH, et al. (2010) Cystic Fibrosis Transmembrane Conductance Regulator Interacts with Multiple Immunoglobulin Domains of Filamin A. Journal of Biological Chemistry 285: 17156–17165 doi:10.1074/jbc.M109.080523.

64. LodhaN, BonfieldS, OrtonNC, DoeringCJ, McRoryJE, et al. (2010) Congenital stationary night blindness in mice - a tale of two Cacna1f mutants. Adv Exp Med Biol 664: 549–558 doi:10.1007/978-1-4419-1399-9_63.

65. GravanteB (2004) Interaction of the Pacemaker Channel HCN1 with Filamin A. Journal of Biological Chemistry 279: 43847–43853 doi:10.1074/jbc.M401598200.

66. ZhangM, BreitwieserGE (2005) High affinity interaction with filamin A protects against calcium-sensing receptor degradation. J Biol Chem 280: 11140–11146 doi:10.1074/jbc.M412242200.

67. SampsonLJ (2003) Direct Interaction between the Actin-binding Protein Filamin-A and the Inwardly Rectifying Potassium Channel, Kir2.1. Journal of Biological Chemistry 278: 41988–41997 doi:10.1074/jbc.M307479200.

68. PetreccaK, MillerDM, ShrierA (2000) Localization and enhanced current density of the Kv4.2 potassium channel by interaction with the actin-binding protein filamin. Journal of Neuroscience 20: 8736–8744.

69. van der FlierA, SonnenbergA (2001) Structural and functional aspects of filamins. Biochim Biophys Acta 1538: 99–117.

70. SeifertJP (2004) RhoA Activates Purified Phospholipase C-ε by a Guanine Nucleotide-dependent Mechanism. Journal of Biological Chemistry 279: 47992–47997 doi:10.1074/jbc.M407111200.

71. KainulainenT, PenderA, D'AddarioM, FengY, LekicP, et al. (2002) Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J Biol Chem 277: 21998–22009 doi:10.1074/jbc.M200715200.

72. GlogauerM, AroraP, ChouD, JanmeyPA, DowneyGP, et al. (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273: 1689–1698.

73. ShifrinY, AroraP, OhtaY, CalderwoodD, McCullochC (2009) The Role of FilGAP-Filamin A Interactions in Mechanoprotection. Mol Biol Cell doi:10.1091/mbc.E08-08-0872.

74. BellangerJM, AstierC, SardetC, OhtaY, StosselTP, et al. (2000) The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Biol 2: 888–892 doi:10.1038/35046533.

75. WingMR, SnyderJT, SondekJ, HardenTK (2003) Direct activation of phospholipase C-epsilon by Rho. J Biol Chem 278: 41253–41258 doi:10.1074/jbc.M306904200.

76. SongC, SatohT, EdamatsuH, WuD, TadanoM, et al. (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene 21: 8105–8113 doi:10.1038/sj.onc.1206003.

77. SeifertJP, ZhouY, HicksSN, SondekJ, HardenTK (2008) Dual activation of phospholipase C-epsilon by Rho and Ras GTPases. J Biol Chem 283: 29690–29698 doi:10.1074/jbc.M805038200.

78. BunneyTD, KatanM (2006) Phospholipase C epsilon: linking second messengers and small GTPases. Trends Cell Biol 16: 640–648 doi:10.1016/j.tcb.2006.10.007.

79. LopezI, MakEC, DingJ, HammHE, LomasneyJW (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276: 2758–2765 doi:10.1074/jbc.M008119200.

80. LippP, ReitherG (2011) Protein Kinase C: The “Masters” of Calcium and Lipid. Cold Spring Harbor Perspectives in Biology 3: a004556–a004556 doi:10.1101/cshperspect.a004556.

81. WatrasJ, EhrlichBE (1991) Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum.

82. JafriMS, KeizerJ (1995) On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J 69: 2139–2153 doi:10.1016/S0006-3495(95)80088-3.

83. WagnerJ, KeizerJ (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J 67: 447–456 doi:10.1016/S0006-3495(94)80500-4.

84. BerridgeMJ, TaylorCW (1988) Inositol Trisphosphate and Calcium Signaling. Cold Spring Harbor Symposia on Quantitative Biology 53: 927–933 doi:10.1101/SQB.1988.053.01.107.

85. SomlyoAP, SomlyoAV (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol (Lond) 522 Pt 2: 177–185.

86. BatchelderEL, Thomas-VirnigCL, HardinJD, WhiteJG (2007) Cytokinesis is not controlled by calmodulin or myosin light chain kinase in the Caenorhabditis elegans early embryo. FEBS Lett 581: 4337–4341.

87. WissmannA, InglesJ, McGheeJD, MainsPE (1997) Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes & Development 11: 409–422 doi:10.1101/gad.11.4.409.

88. CramEJ, ShangH, SchwarzbauerJE (2006) A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J Cell Sci 119: 4811–4818 doi:10.1242/jcs.03274.

89. KirbyC, KuschM, KemphuesK (1990) Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol 142: 203–215.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#