#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations


Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP–based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.


Vyšlo v časopise: Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003509
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003509

Souhrn

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP–based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.


Zdroje

1. MurrayCJ, RosenfeldLC, LimSS, AndrewsKG, ForemanKJ, et al. (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413–431.

2. TeoYY, SmallKS, KwiatkowskiDP (2010) Methodological challenges of genome-wide association analysis in Africa. Nat Rev Genet 11: 149–160.

3. SpencerC, HechterE, VukcevicD, DonnellyP (2011) Quantifying the underestimation of relative risks from genome-wide association studies. PLoS Genet 7: e1001337 doi:10.1371/journal.pgen.1002198.

4. HowieBN, DonnellyP, MarchiniJ (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529 doi:10.1371/journal.pgen.1000529.

5. AltshulerDM, GibbsRA, PeltonenL, DermitzakisE, SchaffnerSF, et al. (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58.

6. HowieB, MarchiniJ, StephensM (2011) Genotype imputation with thousands of genomes. G3 (Bethesda) 1: 457–470.

7. HuangL, LiY, SingletonAB, HardyJA, AbecasisG, et al. (2009) Genotype-imputation accuracy across worldwide human populations. Am J Hum Genet 84: 235–250.

8. JostinsL, MorleyKI, BarrettJC (2011) Imputation of low-frequency variants using the HapMap3 benefits from large, diverse reference sets. Eur J Hum Genet 19: 662–666.

9. McVeanG (2009) A genealogical interpretation of principal components analysis. PLoS Genet 5: e1000686 doi:10.1371/journal.pgen.1000686.

10. JallowM, TeoYY, SmallKS, RockettKA, DeloukasP, et al. (2009) Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 41: 657–665.

11. PriceAL, ZaitlenNA, ReichD, PattersonN (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11: 459–463.

12. PirinenM, DonnellyP, SpencerC (2012) Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. Ann Appl Stat (in press).

13. AstleW, BaldingDJ (2009) Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science 24: 451–471.

14. de BakkerPI, FerreiraMA, JiaX, NealeBM, RaychaudhuriS, et al. (2008) Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 17: R122–128.

15. AidooM, TerlouwDJ, KolczakMS, McElroyPD, ter KuileFO, et al. (2002) Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359: 1311–1312.

16. PagnierJ, MearsJG, Dunda-BelkhodjaO, Schaefer-RegoKE, BeldjordC, et al. (1984) Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc Natl Acad Sci U S A 81: 1771–1773.

17. WakefieldJ (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 81: 208–227.

18. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678.

19. BellenguezC, BevanS, GschwendtnerA, SpencerCC, BurgessAI, et al. (2012) Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet

20. HanB, EskinE (2011) Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88: 586–598.

21. WuMC, LeeS, CaiT, LiY, BoehnkeM, et al. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89: 82–93.

22. WangX, LiuX, SimX, XuH, KhorCC, et al. (2012) A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations. Eur J Hum Genet 20: 469–475.

23. Fisher RA (1925) Statistical methods for research workers. Edinburgh, London,: Oliver and Boyd. ix: p., 1 l., p.

24. GiegerC, RadhakrishnanA, CvejicA, TangW, PorcuE, et al. (2011) New gene functions in megakaryopoiesis and platelet formation. Nature 480: 201–208.

25. SoranzoN, SpectorTD, ManginoM, KuhnelB, RendonA, et al. (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41: 1182–1190.

26. TimmannC, ThyeT, VensM, EvansJ, MayJ, et al. (2012) Genome-wide association study indicates two novel resistance loci for severe malaria. Nature

27. CortesA, BrownMA (2011) Promise and pitfalls of the Immunochip. Arthritis Res Ther 13: 101.

28. GaneshSK, ZakaiNA, van RooijFJ, SoranzoN, SmithAV, et al. (2009) Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat Genet 41: 1191–1198.

29. NallsMA, CouperDJ, TanakaT, van RooijFJ, ChenMH, et al. (2011) Multiple loci are associated with white blood cell phenotypes. PLoS Genet 7: e1002113 doi:10.1371/journal.pgen.1002113.

30. EvansDM, SpencerCC, PointonJJ, SuZ, HarveyD, et al. (2011) Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 43: 761–767.

31. DuboisPC, TrynkaG, FrankeL, HuntKA, RomanosJ, et al. (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42: 295–302.

32. SawcerS, HellenthalG, PirinenM, SpencerCC, PatsopoulosNA, et al. (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476: 214–219.

33. SuZ, MarchiniJ, DonnellyP (2011) HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 27: 2304–2305.

34. SpencerCC, SuZ, DonnellyP, MarchiniJ (2009) Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5: e1000477 doi:10.1371/journal.pgen.1000477.

35. ChungCM, LinTH, ChenJW, LeuHB, YangHC, et al. (2011) A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 60: 2417–2423.

36. DastaniZ, HivertMF, TimpsonN, PerryJR, YuanX, et al. (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8: e1002607 doi:10.1371/journal.pgen.1002607.

37. ZhuM, GranilloO, WenR, YangK, DaiX, et al. (2005) Negative regulation of lymphocyte activation by the adaptor protein LAX. J Immunol 174: 5612–5619.

38. W.H.O (2000) Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 94 Suppl 1: S1–90.

39. W.H.O. (2010) Guidelines for the Treatment of Malaria. World Health Organisation. 194 p.

40. ChokshiDA, TheraMA, ParkerM, DiakiteM, MakaniJ, et al. (2007) Valid consent for genomic epidemiology in developing countries. PLoS Med 4: e95 doi:10.1371/journal.pmed.0040095.

41. de VriesJ, BullSJ, DoumboO, IbrahimM, Mercereau-PuijalonO, et al. (2011) Ethical issues in human genomics research in developing countries. BMC Med Ethics 12: 5.

42. ParkerM, BullSJ, de VriesJ, AgbenyegaT, DoumboOK, et al. (2009) Ethical data release in genome-wide association studies in developing countries. PLoS Med 6: e1000143 doi:10.1371/journal.pmed.1000143.

43. R Development Core Team (2011) R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing.

44. FujitaPA, RheadB, ZweigAS, HinrichsAS, KarolchikD, et al. (2011) The UCSC Genome Browser database: update 2011. Nucleic acids research 39: D876–882.

45. RaychaudhuriS, PlengeRM, RossinEJ, NgAC, PurcellSM, et al. (2009) Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet 5: e1000534 doi:10.1371/journal.pgen.1000534.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#