Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.
Vyšlo v časopise:
Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003520
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003520
Souhrn
Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.
Zdroje
1. HindorffLA, SethupathyP, JunkinsHA, RamosEM, MehtaJP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.
2. MaherB (2008) Personal genomes: The case of the missing heritability. Nature 456: 18–21.
3. EichlerEE, FlintJ, GibsonG, KongA, LealSM, et al. (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446–450.
4. ManolioTA, CollinsFS, CoxNJ, GoldsteinDB, HindorffLA, et al. (2009) Finding the missing heritability of complex diseases. Nature 461: 747–753.
5. GibsonG (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13: 135–145.
6. VisscherPM, BrownMA, McCarthyMI, YangJ (2012) Five Years of GWAS Discovery. Am J Hum Genet 90: 7–24.
7. DicksonSP, WangK, KrantzI, HakonarsonH, GoldsteinDB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8: e1000294 doi:10.1371/journal.pbio.1000294
8. HillWG, GoddardME, VisscherPM (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 4: e1000008 doi:10.1371/journal.pgen.1000008
9. WrayNR, PurcellSM, VisscherPM (2011) Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol 9: e1000579 doi:10.1371/journal.pbio.1000579
10. ZukO, HechterE, SunyaevSR, LanderES (2012) The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci U S A
11. VisscherPM, HillWG, WrayNR (2008) Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet 9: 255–266.
12. YangJ, BenyaminB, McEvoyBP, GordonS, HendersAK, et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: 565–569.
13. Falconer DS (1986) Introduction to quantitative genetics. Burnt Mill, Harlow, Essex, England New York: Longman Scientific & Technical ; Wiley. viii, 340 p. p.
14. Lango Allen H, Lettre G, Estrada K, Berndt MN, Weedon MN, Abecasis GR, Boehnke M, Gieger C, Gudbjartsson D, Heard-Costa NL, Jackson AU, McCarthy MI, Rivadeneira F, Smith A, Soranzo N, Uitterlinden AG, Frayling TM, Hirschhorn JN, GIANT Consortium. The identification of over 135 loci involved in adult height variation provides important insights into the contribution of common variation to a model complex trait. Talk presented at the 59th annual meeting of the American Society of Human Genetics, October 22, 2009, Honolulu, HI.
15. PasaniucB, ZaitlenN, LettreG, ChenGK, TandonA, et al. (2011) Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a Breast Cancer Consortium. PLoS Genet 7: e1001371 doi:10.1371/journal.pgen.1001371
16. SoHC, LiM, ShamPC (2011) Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genet Epidemiol 35: 447–456.
17. KangHM, SulJH, ServiceSK, ZaitlenNA, KongSY, et al. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42: 348–354.
18. DearyIJ, YangJ, DaviesG, HarrisSE, TenesaA, et al. (2012) Genetic contributions to stability and change in intelligence from childhood to old age. Nature 482: 212–215.
19. VattikutiS, GuoJ, ChowCC (2012) Heritability and Genetic Correlations Explained by Common SNPs for Metabolic Syndrome Traits. PLoS Genet 8: e1002637 doi:10.1371/journal.pgen.1002637
20. KongA, MassonG, FriggeML, GylfasonA, ZusmanovichP, et al. (2008) Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40: 1068–1075.
21. KendlerKS, NealeMC, KesslerRC, HeathAC, EavesLJ (1993) A test of the equal-environment assumption in twin studies of psychiatric illness. Behav Genet 23: 21–27.
22. Falconer DS (1989) Introduction to quantitative genetics. Burnt Mill, Harlow, Essex, England New York: Longman Wiley. xii, 438 p. p.
23. PowellJE, VisscherPM, GoddardME (2010) Reconciling the analysis of IBD and IBS in complex trait studies. Nat Rev Genet
24. BrowningSR, BrowningBL (2010) High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86: 526–539.
25. GusevA, LoweJK, StoffelM, DalyMJ, AltshulerD, et al. (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Res 19: 318–326.
26. VisscherPM, MedlandSE, FerreiraMA, MorleyKI, ZhuG, et al. (2006) Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2: e41 doi:10.1371/journal.pgen.0020041
27. VisscherPM, MacgregorS, BenyaminB, ZhuG, GordonS, et al. (2007) Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81: 1104–1110.
28. PriceAL, HelgasonA, ThorleifssonG, McCarrollSA, KongA, et al. (2011) Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet 7: e1001317 doi:10.1371/journal.pgen.1001317
29. BrowningSR, BrowningBL (2013) Identity-by-descent-based heritability analysis in the Northern Finland Birth Cohort. Hum Genet 132: 129–138.
30. VisscherPM, McEvoyB, YangJ (2010) From Galton to GWAS: quantitative genetics of human height. Genet Res (Camb) 92: 371–379.
31. SilventoinenK, SammalistoS, PerolaM, BoomsmaDI, CornesBK, et al. (2003) Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res 6: 399–408.
32. HayesBJ, VisscherPM, GoddardME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res (Camb) 91: 47–60.
33. LeeSH, WrayNR, GoddardME, VisscherPM (2011) Estimating Missing Heritability for Disease from Genome-wide Association Studies. Am J Hum Genet 88: 294–305.
34. StahlEA, WegmannD, TrynkaG, Gutierrez-AchuryJ, DoR, et al. (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet
35. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland, Mass.: Sinauer. xvi, 980 p. p.
36. HelgasonA, PalssonS, GudbjartssonDF, KristjanssonT, StefanssonK (2008) An association between the kinship and fertility of human couples. Science 319: 813–816.
37. DearyIJ, YangJ, DaviesG, HarrisSE, TenesaA, et al. (2012) Genetic contributions to stability and change in intelligence from childhood to old age. Nature
38. GoldsteinDB (2009) Common genetic variation and human traits. N Engl J Med 360: 1696–1698.
39. McClellanJ, KingMC (2010) Genetic heterogeneity in human disease. Cell 141: 210–217.
40. YangJ, LeeSH, GoddardME, VisscherPM (2011) GCTA: A Tool for Genome-wide Complex Trait Analysis. Am J Hum Genet 88: 76–82.
41. Wasserman L (2005) All of Statistics: Springer.
42. PiliaG, ChenWM, ScuteriA, OrruM, AlbaiG, et al. (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2: e132 doi:10.1371/journal.pgen.0020132
43. TowneB, CzerwinskiSA, DemerathEW, BlangeroJ, RocheAF, et al. (2005) Heritability of age at menarche in girls from the Fels Longitudinal Study. Am J Phys Anthropol 128: 210–219.
44. MurabitoJM, YangQ, FoxC, WilsonPW, CupplesLA (2005) Heritability of age at natural menopause in the Framingham Heart Study. J Clin Endocrinol Metab 90: 3427–3430.
45. FeitosaMF, BoreckiI, HuntSC, ArnettDK, RaoDC, et al. (2000) Inheritance of the waist-to-hip ratio in the National Heart, Lung, and Blood Institute Family Heart Study. Obes Res 8: 294–301.
46. YangJ, ManolioTA, PasqualeLR, BoerwinkleE, CaporasoN, et al. (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43: 519–525.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
- HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages
- Female Bias in and Regulation by the Histone Demethylase KDM6A
- High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Isolates