Genome-Wide Identification of Regulatory RNAs in the Human Pathogen
Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.
Vyšlo v časopise:
Genome-Wide Identification of Regulatory RNAs in the Human Pathogen. PLoS Genet 9(5): e32767. doi:10.1371/journal.pgen.1003493
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003493
Souhrn
Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.
Zdroje
1. GripenlandJ, NetterlingS, LohE, TiensuuT, Toledo-AranaA, et al. (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8: 857–866.
2. PapenfortK, VogelJ (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8: 116–127.
3. RombyP, CharpentierE (2010) An overview of RNAs with regulatory functions in Gram-positive bacteria. Cell Mol Life Sci 67: 217–237.
4. BrantlS (2012) Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 7: 853–871.
5. NudlerE, MironovAS (2004) The riboswitch control of bacterial metabolism. Trends in Biochemical Sciences 29: 11–17.
6. PichonC, FeldenB (2007) Proteins that interact with bacterial small RNA regulators. FEMS Microbiol Rev 31: 614–625.
7. WassarmanKM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10: 164–168.
8. BhayaD, DavisonM, BarrangouR (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45: 273–297.
9. WatersLS, StorzG (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.
10. BrantlS (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10: 102–109.
11. ThomasonMK, StorzG (2010) Bacterial antisense RNAs: how many are there, and what are they doing? Annu Rev Genet 44: 167–188.
12. VogelJ, LuisiBF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9: 578–589.
13. ChenAG, SudarsanN, BreakerRR (2011) Mechanism for gene control by a natural allosteric group I ribozyme. RNA 17: 1967–1972.
14. LeeER, BakerJL, WeinbergZ, SudarsanN, BreakerRR (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329: 845–848.
15. SudarsanN, LeeER, WeinbergZ, MoyRH, KimJN, et al. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321: 411–413.
16. ChenY, IndurthiDC, JonesSW, PapoutsakisET (2011) Small RNAs in the genus Clostridium. MBio 2: e00340–00310.
17. LivnyJ, TeonadiH, LivnyM, WaldorMK (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 3: e3197.
18. MraheilMA, BillionA, KuenneC, PischimarovJ, KreikemeyerB, et al. (2010) Comparative genome-wide analysis of small RNAs of major Gram-positive pathogens: from identification to application. Microb Biotechnol 3: 658–676.
19. ObanaN, ShirahamaY, AbeK, NakamuraK (2010) Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5′ leader sequence. Mol Microbiol 77: 1416–1428.
20. OhtaniK, KawsarHI, OkumuraK, HayashiH, ShimizuT (2003) The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol Lett 222: 137–141.
21. ShimizuT, YaguchiH, OhtaniK, BanuS, HayashiH (2002) Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43: 257–265.
22. AndreG, EvenS, PutzerH, BurguiereP, CrouxC, et al. (2008) S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 36: 5955–5969.
23. WaltersBA, RobertsR, StaffordR, SeneviratneE (1983) Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. Gut 24: 206–212.
24. JustI, SelzerJ, WilmM, von Eichel-StreiberC, MannM, et al. (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500–503.
25. DeneveC, JanoirC, PoilaneI, FantinatoC, CollignonA (2009) New trends in Clostridium difficile virulence and pathogenesis. Int J Antimicrob Agents 33 Suppl 1: S24–28.
26. DupuyB, GovindR, AntunesA, MatamourosS (2008) Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol 57: 685–689.
27. PichonC, du MerleL, CaliotME, Trieu-CuotP, Le BouguenecC (2012) An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains. Nucleic Acids Res 40: 2846–2861.
28. CroucherNJ, ThomsonNR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13: 619–624.
29. SorekR, CossartP (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11: 9–16.
30. VockenhuberMP, SharmaCM, StattMG, SchmidtD, XuZ, et al. (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8: 468–477.
31. WilmsI, OverloperA, NowrousianM, SharmaCM, NarberhausF (2012) Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA Biol 9: 446–457.
32. MonotM, Boursaux-EudeC, ThibonnierM, VallenetD, MoszerI, et al. (2011) Reannotation of the genome sequence of Clostridium difficile strain 630. J Med Microbiol 60: 1193–1199.
33. HobbsEC, FontaineF, YinX, StorzG (2011) An expanding universe of small proteins. Curr Opin Microbiol 14: 167–173.
34. GardnerPP, DaubJ, TateJG, NawrockiEP, KolbeDL, et al. (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37: D136–140.
35. GreenNJ, GrundyFJ, HenkinTM (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584: 318–324.
36. VitreschakAG, MironovAA, LyubetskyVA, GelfandMS (2008) Comparative genomic analysis of T-box regulatory systems in bacteria. RNA 14: 717–735.
37. RodionovDA, VitreschakAG, MironovAA, GelfandMS (2004) Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. Nucleic Acids Res 32: 3340–3353.
38. RodionovDA, VitreschakAG, MironovAA, GelfandMS (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 31: 6748–6757.
39. StablerRA, HeM, DawsonL, MartinM, ValienteE, et al. (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10: R102.
40. AceboP, Martin-GalianoAJ, NavarroS, ZaballosA, AmblarM (2012) Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. RNA 18: 530–546.
41. TrotochaudAE, WassarmanKM (2005) A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12: 313–319.
42. ZukerM (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.
43. BarrickJE, SudarsanN, WeinbergZ, RuzzoWL, BreakerRR (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11: 774–784.
44. DineenSS, McBrideSM, SonensheinAL (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192: 5350–5362.
45. SaujetL, MonotM, DupuyB, SoutourinaO, Martin-VerstraeteI (2011) The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J Bacteriol 193: 3186–3196.
46. WaligoraAJ, BarcMC, BourliouxP, CollignonA, KarjalainenT (1999) Clostridium difficile cell attachment is modified by environmental factors. Appl Environ Microbiol 65: 4234–4238.
47. UnderwoodS, GuanS, VijayasubhashV, BainesSD, GrahamL, et al. (2009) Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191: 7296–7305.
48. FrohlichKS, VogelJ (2009) Activation of gene expression by small RNA. Curr Opin Microbiol 12: 674–682.
49. OpdykeJA, FozoEM, HemmMR, StorzG (2011) RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J Mol Biol 406: 29–43.
50. FaithNG, KathariouS, NeudeckBL, LuchanskyJB, CzuprynskiCJ (2007) A P60 mutant of Listeria monocytogenes is impaired in its ability to cause infection in intragastrically inoculated mice. Microb Pathog 42: 237–241.
51. SashinamiH, HuDL, LiSJ, MitsuiT, HakamadaK, et al. (2010) Virulence factor p60 of Listeria monocytogenes modulates innate immunity by inducing tumor necrosis factor alpha. FEMS Immunol Med Microbiol 59: 100–107.
52. MargotP, WahlenM, GholamhoseinianA, PiggotP, KaramataD (1998) The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180: 749–752.
53. TsengCL, ChenJT, LinJH, HuangWZ, ShawGC (2011) Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis. Arch Microbiol 193: 677–685.
54. RomlingU (2012) Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol 14: 1817–1829.
55. HenggeR (2010) Cyclic-di-GMP reaches out into the bacterial RNA world. Sci Signal 3: pe44.
56. BordeleauE, FortierLC, MalouinF, BurrusV (2011) c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7: e1002039.
57. PurcellEB, McKeeRW, McBrideSM, WatersCM, TamayoR (2012) Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol 194: 3307–3316.
58. AltmanS, WesolowskiD, Guerrier-TakadaC, LiY (2005) RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci U S A 102: 11284–11289.
59. EvenS, PellegriniO, ZigL, LabasV, VinhJ, et al. (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 33: 2141–2152.
60. ShahbabianK, JamalliA, ZigL, PutzerH (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28: 3523–3533.
61. GrissaI, VergnaudG, PourcelC (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172.
62. MakarovaKS, HaftDH, BarrangouR, BrounsSJ, CharpentierE, et al. (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9: 467–477.
63. HaleCR, MajumdarS, ElmoreJ, PfisterN, ComptonM, et al. (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45: 292–302.
64. FineranPC, CharpentierE (2012) Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology 434: 202–209.
65. RichterH, ZoephelJ, SchermulyJ, MaticzkaD, BackofenR, et al. (2012) Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res 40: 9887–9896.
66. DeltchevaE, ChylinskiK, SharmaCM, GonzalesK, ChaoY, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.
67. PougachK, SemenovaE, BogdanovaE, DatsenkoKA, DjordjevicM, et al. (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77: 1367–1379.
68. SorekR, KuninV, HugenholtzP (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6: 181–186.
69. HershbergR, AltuviaS, MargalitH (2003) A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res 31: 1813–1820.
70. GeissmannT, ChevalierC, CrosMJ, BoissetS, FechterP, et al. (2009) A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37: 7239–7257.
71. GimpelM, PreisH, BarthE, GramzowL, BrantlS (2012) SR1–a small RNA with two remarkably conserved functions. Nucleic Acids Res 40: 11659–11672.
72. SahrT, RusniokC, Dervins-RavaultD, SismeiroO, CoppeeJY, et al. (2012) Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence. RNA Biol 9: 503–519.
73. JonesBV (2010) The human gut mobile metagenome: a metazoan perspective. Gut Microbes 1: 415–431.
74. LepageP, LeclercMC, JoossensM, MondotS, BlottiereHM, et al. (2013) A metagenomic insight into our gut's microbiome. Gut 62: 146–158.
75. SternA, MickE, TiroshI, SagyO, SorekR (2012) CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22: 1985–1994.
76. DupuyB, SonensheinAL (1998) Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27: 107–120.
77. FaganRP, FairweatherNF (2011) Clostridium difficile has two parallel and essential Sec secretion systems. J Biol Chem 286: 27483–27493.
78. EthapaT, LeuzziR, NgYK, BabanST, AdamoR, et al. (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195: 545–555.
79. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning : a laboratory manual, second edition. Cold Spring Harbor, N. Y.: Cold Spring Harbor Laboratory.
80. O'ConnorJR, LyrasD, FarrowKA, AdamsV, PowellDR, et al. (2006) Construction and analysis of chromosomal Clostridium difficile mutants. Mol Microbiol 61: 1335–1351.
81. MetcalfD, SharifS, WeeseJS (2010) Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. Anaerobe 16: 439–443.
82. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
83. WurtzelO, SapraR, ChenF, ZhuY, SimmonsBA, et al. (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20: 133–141.
84. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
85. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
86. SebaihiaM, WrenBW, MullanyP, FairweatherNF, MintonN, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38: 779–786.
87. TjadenB, GoodwinSS, OpdykeJA, GuillierM, FuDX, et al. (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34: 2791–2802.
88. SmithC, HeyneS, RichterAS, WillS, BackofenR (2010) Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 38: W373–377.
89. EggenhoferF, TaferH, StadlerPF, HofackerIL (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39: W149–154.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
- HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages
- Female Bias in and Regulation by the Histone Demethylase KDM6A
- High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Isolates