#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

ATM Release at Resected Double-Strand Breaks Provides Heterochromatin Reconstitution to Facilitate Homologous Recombination


Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly, depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.


Vyšlo v časopise: ATM Release at Resected Double-Strand Breaks Provides Heterochromatin Reconstitution to Facilitate Homologous Recombination. PLoS Genet 9(8): e32767. doi:10.1371/journal.pgen.1003667
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003667

Souhrn

Non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the two main pathways for repairing DNA double-strand breaks (DSBs). During the G2 phase of the mammalian cell cycle, both processes can operate and chromatin structure is one important factor which determines DSB repair pathway choice. ATM facilitates the repair of heterochromatic DSBs by phosphorylating and inactivating the heterochromatin building factor KAP-1, leading to local chromatin relaxation. Here, we show that ATM accumulation and activity is strongly diminished at DSBs undergoing end-resection during HR. Such DSBs remain unrepaired in cells devoid of the HR factors BRCA2, XRCC3 or RAD51. Strikingly, depletion of KAP-1 or expression of phospho-mimic KAP-1 allows repair of resected DSBs in the absence of BRCA2, XRCC3 or RAD51 by an erroneous PARP-dependent alt-NHEJ process. We suggest that DSBs in heterochromatin elicit initial local heterochromatin relaxation which is reversed during HR due to the release of ATM from resection break ends. The restored heterochromatic structure facilitates HR and prevents usage of error-prone alternative processes.


Zdroje

1. JeggoPA, GeutingV, LobrichM (2011) The role of homologous recombination in radiation-induced double-strand break repair. Radiother Oncol 101: 7–12.

2. ThompsonLH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751: 158–246.

3. MladenovE, IliakisG (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 711: 61–72.

4. BensimonA, AebersoldR, ShilohY (2011) Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 585: 1625–1639.

5. van GentDC, van der BurgM (2007) Non-homologous end-joining, a sticky affair. Oncogene 26: 7731–7740.

6. MazonG, MimitouEP, SymingtonLS (2010) SnapShot: Homologous recombination in DNA double-strand break repair. Cell 142: 646–646.

7. WeteringsE, ChenDJ (2008) The endless tale of non-homologous end-joining. Cell Res 18: 114–124.

8. RothkammK, KrugerI, ThompsonLH, LobrichM (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706–5715.

9. ShrivastavM, De HaroLP, NickoloffJA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147.

10. TakedaS, NakamuraK, TaniguchiY, PaullTT (2007) Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28: 351–352.

11. GrabarzA, BarascuA, Guirouilh-BarbatJ, LopezBS (2012) Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2: 249–268.

12. CorneoB, WendlandRL, DerianoL, CuiX, KleinIA, WongSY, ArnalS, HolubAJ, WellerGR, PancakeBA, ShahS, BrandtVL, MeekK, RothDB (2007) Rag mutations reveal robust alternative end joining. Nature 449: 483–486.

13. YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW (2007) IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449: 478–482.

14. AudebertM, SallesB, CalsouP (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279: 55117–55126.

15. MansourWY, RheinT, Dahm-DaphiJ (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38: 6065–6077.

16. WangH, RosidiB, PerraultR, WangM, ZhangL, WindhoferF, IliakisG (2005) DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. Cancer Res 65: 4020–4030.

17. WangM, WuW, WuW, RosidiB, ZhangL, WangH, IliakisG (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34: 6170–6182.

18. LukasJ, LukasC, BartekJ (2011) More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13: 1161–1169.

19. CannKL, DellaireG (2011) Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol 89: 45–60.

20. GoodarziAA, JeggoPA (2012) The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int J Mol Sci 13: 11844–11860.

21. ZivY, BielopolskiD, GalantyY, LukasC, TayaY, SchultzDC, LukasJ, Bekker-JensenS, BartekJ, ShilohY (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8: 870–876.

22. RyanRF, SchultzDC, AyyanathanK, SinghPB, FriedmanJR, FredericksWJ, RauscherFJIII (1999) KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 19: 4366–4378.

23. GoodarziAA, KurkaT, JeggoPA (2011) KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18: 831–839.

24. AyoubN, JeyasekharanAD, BernalJA, VenkitaramanAR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453: 682–686.

25. BaldeyronC, SoriaG, RocheD, CookAJ, AlmouzniG (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193: 81–95.

26. LuijsterburgMS, DinantC, LansH, StapJ, WiernaszE, LagerwerfS, WarmerdamDO, LindhM, BrinkMC, DobruckiJW, AtenJA, FousteriMI, JansenG, DantumaNP, VermeulenW, MullendersLH, HoutsmullerAB, VerschurePJ, van DrielR (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185: 577–586.

27. ZarebskiM, WiernaszE, DobruckiJW (2009) Recruitment of heterochromatin protein 1 to DNA repair sites. Cytometry A 75: 619–625.

28. DinantC, LuijsterburgMS (2009) The emerging role of HP1 in the DNA damage response. Mol Cell Biol 29: 6335–6340.

29. RiballoE, KuhneM, RiefN, DohertyA, SmithGC, RecioMJ, ReisC, DahmK, FrickeA, KremplerA, ParkerAR, JacksonSP, GenneryA, JeggoPA, LobrichM (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

30. GoodarziAA, NoonAT, DeckbarD, ZivY, ShilohY, LobrichM, JeggoPA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31: 167–177.

31. GoodarziAA, JeggoP, LobrichM (2010) The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst) 9: 1273–1282.

32. BeucherA, BirrauxJ, TchouandongL, BartonO, ShibataA, ConradS, GoodarziAA, KremplerA, JeggoPA, LobrichM (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28: 3413–3427.

33. ShibataA, ConradS, BirrauxJ, GeutingV, BartonO, IsmailA, KakarougkasA, MeekK, Taucher-ScholzG, LobrichM, JeggoPA (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30: 1079–1092.

34. NoonAT, ShibataA, RiefN, LobrichM, StewartGS, JeggoPA, GoodarziAA (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12: 177–184.

35. StiffT, O'DriscollM, RiefN, IwabuchiK, LobrichM, JeggoPA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64: 2390–2396.

36. BurmaS, ChenBP, MurphyM, KurimasaA, ChenDJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462–42467.

37. CimprichKA, CortezD (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

38. MimitouEP, SymingtonLS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455: 770–774.

39. ShiotaniB, ZouL (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33: 547–558.

40. JazayeriA, FalckJ, LukasC, BartekJ, SmithGC, LukasJ, JacksonSP (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

41. MatsuokaS, BallifBA, SmogorzewskaA, McDonaldERIII, HurovKE, LuoJ, BakalarskiCE, ZhaoZ, SoliminiN, LerenthalY, ShilohY, GygiSP, ElledgeSJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

42. ConradS, KunzelJ, LobrichM (2011) Sister chromatid exchanges occur in G2-irradiated cells. Cell Cycle 10: 222–228.

43. MansourWY, SchumacherS, RosskopfR, RheinT, Schmidt-PetersenF, GatzemeierF, HaagF, BorgmannK, WillersH, Dahm-DaphiJ (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36: 4088–4098.

44. O'GeenH, SquazzoSL, IyengarS, BlahnikK, RinnJL, ChangHY, GreenR, FarnhamPJ (2007) Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PLoS Genet 3: e89.

45. LavinMF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9: 759–769.

46. ChapmanJR, SossickAJ, BoultonSJ, JacksonSP (2012) BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci 125: 3529–3534.

47. BoboilaC, JankovicM, YanCT, WangJH, WesemannDR, ZhangT, FazeliA, FeldmanL, NussenzweigA, NussenzweigM, AltFW (2010) Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci U S A 107: 3034–3039.

48. SimsekD, JasinM (2010) Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17: 410–416.

49. SimsekD, BrunetE, WongSY, KatyalS, GaoY, McKinnonPJ, LouJ, ZhangL, LiJ, RebarEJ, GregoryPD, HolmesMC, JasinM (2011) DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 7: e1002080.

50. ZhangY, JasinM (2011) An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18: 80–84.

51. SoriaG, AlmouzniG (2013) Differential contribution of HP1 proteins to DNA end resection and homology-directed repair. Cell Cycle 12: 422–429.

52. SonodaE, HocheggerH, SaberiA, TaniguchiY, TakedaS (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5: 1021–1029.

53. WatrinE, PetersJM (2006) Cohesin and DNA damage repair. Experimental Cell Research 312: 2687–2693.

54. DeckbarD, StiffT, KochB, ReisC, LobrichM, JeggoPA (2010) The Limitations of the G(1)-S Checkpoint. Cancer Research 70: 4412–4421.

55. LobrichM, ShibataA, BeucherA, FisherA, EnsmingerM, GoodarziAA, BartonO, JeggoPA (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9: 662–669.

56. QuennetV, BeucherA, BartonO, TakedaS, LobrichM (2011) CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 39: 2144–2152.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#