β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.
Vyšlo v časopise:
β-Catenin-Independent Activation of TCF1/LEF1 in Human Hematopoietic Tumor Cells through Interaction with ATF2 Transcription Factors. PLoS Genet 9(8): e32767. doi:10.1371/journal.pgen.1003603
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003603
Souhrn
The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of β-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to β-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of β-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of β-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to β-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the β-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of β-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.
Zdroje
1. ReyaT, CleversH (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850.
2. GrigoryanT, WendP, KlausA, BirchmeierW (2008) Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes & development 22: 2308–2341.
3. CleversH, NusseR (2012) Wnt/Beta-Catenin Signaling and Disease. Cell 149: 1192–1205.
4. CleversH (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.
5. PolakisP (2012) Drugging Wnt signalling in cancer. The EMBO journal 31: 2737–2746.
6. NusseR, VarmusHE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99–109.
7. BaficoA, LiuG, GoldinL, HarrisV, AaronsonSA (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer cell 6: 497–506.
8. AkiriG, CherianMM, VijayakumarS, LiuG, BaficoA, et al. (2009) Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 28: 2163–2172.
9. VijayakumarS, LiuG, RusIA, YaoS, ChenY, et al. (2011) High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer cell 19: 601–612.
10. AngersS, MoonRT (2009) Proximal events in Wnt signal transduction. Nature reviews Molecular cell biology 10: 468–477.
11. MacDonaldBT, TamaiK, HeX (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17: 9–26.
12. LiVSW, NgSS, BoersemaPJ, LowTY, KarthausWR, et al. (2012) Wnt Signaling through Inhibition of beta-Catenin Degradation in an Intact Axin1 Complex. Cell 149: 1245–1256.
13. CavalloRA, CoxRT, MolineMM, RooseJ, PolevoyGA, et al. (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395: 604–608.
14. ArceL, YokoyamaNN, WatermanML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25: 7492–7504.
15. ArchboldHC, YangYX, ChenL, CadiganKM (2012) How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta physiologica (Oxford, England) 204: 74–109.
16. ValentaT, HausmannG, BaslerK (2012) The many faces and functions of beta-catenin. The EMBO journal 31: 2714–2736.
17. CadiganKM, WatermanML (2012) TCF/LEFs and Wnt Signaling in the Nucleus. Cold Spring Harb Perspect Biol 4: a007906.
18. DanielsDL, WeisWI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature structural & molecular biology 12: 364–371.
19. HansonAJ, WallaceHA, FreemanTJ, BeauchampRD, LeeLA, et al. (2012) XIAP monoubiquitylates Groucho/TLE to promote canonical Wnt signaling. Molecular cell 45: 619–628.
20. MosimannC, HausmannG, BaslerK (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10: 276–286.
21. OlsonLE, TollkuhnJ, ScafoglioC, KronesA, ZhangJ, et al. (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125: 593–605.
22. BeildeckME, GelmannEP, ByersSW (2010) Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Experimental cell research 316: 1763–1772.
23. EssersMAG, de Vries-SmitsLMM, BarkerN, PoldermanPE, BurgeringBMT, et al. (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science (New York, NY) 308: 1181–1184.
24. HoffmeyerK, RaggioliA, RudloffS, AntonR, HierholzerA, et al. (2012) Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science (New York, NY) 336: 1549–1554.
25. BruhnL, MunnerlynA, GrosschedlR (1997) ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes & development 11: 640–653.
26. LabbéE, LetamendiaA, AttisanoL (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proceedings of the National Academy of Sciences of the United States of America 97: 8358–8363.
27. NishitaM, HashimotoMK, OgataS, LaurentMN, UenoN, et al. (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature 403: 781–785.
28. NateriAS, Spencer-DeneB, BehrensA (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437: 281–285.
29. ValentaT, GayM, SteinerS, DraganovaK, ZemkeM, et al. (2011) Probing transcription-specific outputs of beta-catenin in vivo. Genes Dev 25: 2631–2643.
30. VerbeekS, IzonD, HofhuisF, Robanus-MaandagE, te RieleH, et al. (1995) An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374: 70–74.
31. OkamuraRM, SigvardssonM, GalceranJ, VerbeekS, CleversH, et al. (1998) Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8: 11–20.
32. ReyaT, O'RiordanM, OkamuraR, DevaneyE, WillertK, et al. (2000) Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13: 15–24.
33. CobasM, WilsonA, ErnstB, ManciniSpJC, MacDonaldHR, et al. (2004) Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. The Journal of experimental medicine 199: 221–229.
34. JeannetGg, SchellerM, ScarpellinoLo, DubouxSp, GardiolN, et al. (2008) Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111: 142–149.
35. KochU, WilsonA, CobasM, KemlerR, MacdonaldHR, et al. (2008) Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111: 160–164.
36. Ruiz-HerguidoC, GuiuJ, D'AltriT, Inglas-EsteveJ, DzierzakE, et al. (2012) Hematopoietic stem cell development requires transient Wnt/beta-catenin activity. The Journal of experimental medicine 209: 1457–1468.
37. ZhaoC, BlumJ, ChenA, KwonHY, JungSH, et al. (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer cell 12: 528–541.
38. WangY, KrivtsovAV, SinhaAU, NorthTE, GoesslingW, et al. (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science (New York, NY) 327: 1650–1653.
39. YeungJ, EspositoMT, GandilletA, ZeisigBB, GriessingerE, et al. (2010) Beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer cell 18: 606–618.
40. HeidelFH, BullingerL, FengZ, WangZ, NeffTA, et al. (2012) Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell stem cell 10: 412–424.
41. JamiesonCHM, AillesLE, DyllaSJ, MuijtjensM, JonesC, et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. The New England journal of medicine 351: 657–667.
42. ZhurinskyJ, ShtutmanM, Ben-Ze'evA (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18): 3127–3139.
43. MorganRG, PearnL, LiddiardK, PumfordSL, BurnettAK, et al. (2013) gamma-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of beta-catenin. Leukemia 27: 336–343.
44. TravisA, AmsterdamA, BelangerC, GrosschedlR (1991) LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function. Genes Dev 5: 880–894.
45. van de WeteringM, OosterwegelM, DooijesD, CleversH (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. The EMBO journal 10: 123–132.
46. WatermanML, FischerWH, JonesKA (1991) A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes & development 5: 656–669.
47. GrahamTA, WeaverC, MaoF, KimelmanD, XuW (2000) Crystal structure of a beta-catenin/Tcf complex. Cell 103: 885–896.
48. McMahonAP, MoonRT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58: 1075–1084.
49. SokolS, ChristianJL, MoonRT, MeltonDA (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752.
50. WeaverC, KimelmanD (2004) Move it or lose it: axis specification in Xenopus. Development (Cambridge, England) 131: 3491–3499.
51. StandleyHJ, DestréeO, KofronM, WylieC, HeasmanJ (2006) Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Developmental biology 289: 318–328.
52. GradlD, KönigA, WedlichD (2002) Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. The Journal of biological chemistry 277: 14159–14171.
53. LiuF, van den BroekO, DestréeO, HopplerS (2005) Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta-catenin signalling in mesoderm development. Development (Cambridge, England) 132: 5375–5385.
54. ChinnaduraiG (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Molecular cell 9: 213–224.
55. HamadaF, BienzM (2004) The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Developmental cell 7: 677–685.
56. StaalFJT, LuisTC, TiemessenMM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nature reviews Immunology 8: 581–593.
57. LuisTC, NaberBAE, RoozenPPC, BrugmanMH, de HaasEFE, et al. (2011) Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell stem cell 9: 345–356.
58. IoannidisV, BeermannF, CleversH, HeldW (2001) The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nature immunology 2: 691–697.
59. TakedaH, LyleS, LazarAJF, ZouboulisCC, SmythI, et al. (2006) Human sebaceous tumors harbor inactivating mutations in LEF1. Nature medicine 12: 395–397.
60. NiemannC, OwensDM, HalskenJr, BirchmeierW, WattFM (2002) Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development (Cambridge, England) 129: 95–109.
61. Lopez-BergamiP, LauE, RonaiZe (2010) Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nature Reviews Cancer 10: 65–76.
62. PasseguéE, JochumW, Schorpp-KistnerM, Möhle-SteinleinU, WagnerEF (2001) Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 104: 21–32.
63. PasseguéE, WagnerEF, WeissmanIL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119: 431–443.
64. SteidlU, RosenbauerF, VerhaakRGW, GuX, EbralidzeA, et al. (2006) Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nature genetics 38: 1269–1277.
65. HoverterNP, TingJ-H, SundareshS, BaldiP, WatermanML (2012) A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Molecular and cellular biology 32(18): 3648–62.
66. HikasaH, EzanJ, ItohK, LiX, KlymkowskyMW, et al. (2010) Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Developmental cell 19: 521–532.
67. OtaS, IshitaniS, ShimizuN, MatsumotoK, ItohM, et al. (2012) NLK positively regulates Wnt/beta-catenin signalling by phosphorylating LEF1 in neural progenitor cells. The EMBO journal 31: 1904–1915.
68. WuJQ, SeayM, SchulzVP, HariharanM, TuckD, et al. (2012) Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line. PLoS genetics 8: e1002565–e1002565.
69. GrumolatoL, LiuG, MongP, MudbharyR, BiswasR, et al. (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes & development 24: 2517–2530.
70. LiuG, BaficoA, HarrisVK, AaronsonSA (2003) A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol 23: 5825–5835.
71. Hemmati-BrivanlouA, MeltonDA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77: 273–281.
72. WilsonPA, Hemmati-BrivanlouA (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2013 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity
- Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+ T-cell Populations
- Associations of Mitochondrial Haplogroups B4 and E with Biliary Atresia and Differential Susceptibility to Hydrophobic Bile Acid
- A Role for CF1A 3′ End Processing Complex in Promoter-Associated Transcription