#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Distinct SUMO Ligases Cooperate with Esc2 and Slx5 to Suppress Duplication-Mediated Genome Rearrangements


Suppression of duplication-mediated gross chromosomal rearrangements (GCRs) is essential to maintain genome integrity in eukaryotes. Here we report that SUMO ligase Mms21 has a strong role in suppressing GCRs in Saccharomyces cerevisiae, while Siz1 and Siz2 have weaker and partially redundant roles. Understanding the functions of these enzymes has been hampered by a paucity of knowledge of their substrate specificity in vivo. Using a new quantitative SUMO-proteomics technology, we found that Siz1 and Siz2 redundantly control the abundances of most sumoylated substrates, while Mms21 more specifically regulates sumoylation of RNA polymerase-I and the SMC-family proteins. Interestingly, Esc2, a SUMO-like domain-containing protein, specifically promotes the accumulation of sumoylated Mms21-specific substrates and functions with Mms21 to suppress GCRs. On the other hand, the Slx5-Slx8 complex, a SUMO-targeted ubiquitin ligase, suppresses the accumulation of sumoylated Mms21-specific substrates. Thus, distinct SUMO ligases work in concert with Esc2 and Slx5-Slx8 to control substrate specificity and sumoylation homeostasis to prevent GCRs.


Vyšlo v časopise: Distinct SUMO Ligases Cooperate with Esc2 and Slx5 to Suppress Duplication-Mediated Genome Rearrangements. PLoS Genet 9(8): e32767. doi:10.1371/journal.pgen.1003670
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003670

Souhrn

Suppression of duplication-mediated gross chromosomal rearrangements (GCRs) is essential to maintain genome integrity in eukaryotes. Here we report that SUMO ligase Mms21 has a strong role in suppressing GCRs in Saccharomyces cerevisiae, while Siz1 and Siz2 have weaker and partially redundant roles. Understanding the functions of these enzymes has been hampered by a paucity of knowledge of their substrate specificity in vivo. Using a new quantitative SUMO-proteomics technology, we found that Siz1 and Siz2 redundantly control the abundances of most sumoylated substrates, while Mms21 more specifically regulates sumoylation of RNA polymerase-I and the SMC-family proteins. Interestingly, Esc2, a SUMO-like domain-containing protein, specifically promotes the accumulation of sumoylated Mms21-specific substrates and functions with Mms21 to suppress GCRs. On the other hand, the Slx5-Slx8 complex, a SUMO-targeted ubiquitin ligase, suppresses the accumulation of sumoylated Mms21-specific substrates. Thus, distinct SUMO ligases work in concert with Esc2 and Slx5-Slx8 to control substrate specificity and sumoylation homeostasis to prevent GCRs.


Zdroje

1. GordeninDA, ResnickMA (1998) Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400: 45–58.

2. DeiningerPL, BatzerMA (1999) Alu repeats and human disease. Mol Genet Metab 67: 183–193 doi:10.1006/mgme.1999.2864

3. JiY, EichlerEE, SchwartzS, NichollsRD (2000) Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 10: 597–610.

4. KolodnerRD, PutnamCD, MyungK (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552–557 doi:10.1126/science.1075277

5. PutnamCD, HayesTK, KolodnerRD (2009) Specific pathways prevent duplication-mediated genome rearrangements. Nature 460: 984–989 doi:10.1038/nature08217

6. OhyaT, AraiH, KubotaY, ShinagawaH, HishidaT (2008) A SUMO-like domain protein, Esc2, is required for genome integrity and sister chromatid cohesion in Saccharomyces cerevisiae. Genetics 180: 41–50 doi:10.1534/genetics.107.086249

7. SollierJ, DriscollR, CastellucciF, FoianiM, JacksonSP, et al. (2009) The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell 20: 1671–1682 doi:10.1091/mbc.E08-08-0875

8. NovatchkovaM, BachmairA, EisenhaberB, EisenhaberF (2005) Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 6: 22 doi:10.1186/1471-2105-6-22

9. XieY, KerscherO, KroetzMB, McConchieHF, SungP, et al. (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176–34184 doi:10.1074/jbc.M706025200

10. PruddenJ, PebernardS, RaffaG, SlavinDA, PerryJJP, et al. (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26: 4089–4101 doi:10.1038/sj.emboj.7601838

11. JohnsonES, GuptaAA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106: 735–744.

12. PutnamCD, HayesTK, KolodnerRD (2010) Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 6: e1000933 doi:10.1371/journal.pgen.1000933

13. KatsES, EnserinkJM, MartinezS, KolodnerRD (2009) The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 29: 5226–5237 doi:10.1128/MCB.00894-09

14. HochstrasserM (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107: 5–8.

15. JohnsonES, SchwienhorstI, DohmenRJ, BlobelG (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16: 5509–5519 doi:10.1093/emboj/16.18.5509

16. JohnsonES, BlobelG (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799–26802.

17. ZhaoX, BlobelG (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102: 4777–4782 doi:10.1073/pnas.0500537102

18. LiSJ, HochstrasserM (1999) A new protease required for cell-cycle progression in yeast. Nature 398: 246–251 doi:10.1038/18457

19. LiSJ, HochstrasserM (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20: 2367–2377.

20. MossessovaE, LimaCD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5: 865–876.

21. StrunnikovAV, HoganE, KoshlandD (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9: 587–599.

22. LiS-J, HochstrasserM (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160: 1069–1081 doi:10.1083/jcb.200212052

23. ReindleA, BelichenkoI, BylebylGR, ChenXL, GandhiN, et al. (2006) Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J Cell Sci 119: 4749–4757 doi:10.1242/jcs.03243

24. MatunisMJ, PickartCM (2005) Beginning at the end with SUMO. Nat Struct Mol Biol 12: 565–566 doi:10.1038/nsmb0705-565

25. BerginkS, JentschS (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458: 461–467 doi:10.1038/nature07963

26. CremonaCA, SarangiP, YangY, HangLE, RahmanS, et al. (2012) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45: 422–432 doi:10.1016/j.molcel.2011.11.028

27. TakahashiY, Yong-GonzalezV, KikuchiY, StrunnikovA (2006) SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 172: 783–794 doi:10.1534/genetics.105.047167

28. McAleenanA, Cordón-PreciadoV, Clemente-BlancoA, LiuI-C, SenN, et al. (2012) SUMOylation of the α-Kleisin Subunit of Cohesin Is Required for DNA Damage-Induced Cohesion. Curr Biol 22: 1564–1575 doi:10.1016/j.cub.2012.06.045

29. BurgessRC, RahmanS, LisbyM, RothsteinR, ZhaoX (2007) The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol Cell Biol 27: 6153–6162 doi:10.1128/MCB.00787-07

30. MontpetitB, HazbunTR, FieldsS, HieterP (2006) Sumoylation of the budding yeast kinetochore protein Ndc10 is required for Ndc10 spindle localization and regulation of anaphase spindle elongation. J Cell Biol 174: 653–663 doi:10.1083/jcb.200605019

31. ZhouW, RyanJJ, ZhouH (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279: 32262–32268 doi:10.1074/jbc.M404173200

32. DenisonC, RudnerAD, GerberSA, BakalarskiCE, MoazedD, et al. (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4: 246–254 doi:10.1074/mcp.M400154-MCP200

33. PanseVG, HardelandU, WernerT, KusterB, HurtE (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279: 41346–41351 doi:10.1074/jbc.M407950200

34. HannichJT, LewisA, KroetzMB, LiS-J, HeideH, et al. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102–4110 doi:10.1074/jbc.M413209200

35. WohlschlegelJA, JohnsonES, ReedSI, YatesJR (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279: 45662–45668 doi:10.1074/jbc.M409203200

36. ChenXL, SilverHR, XiongL, BelichenkoI, AdegiteC, et al. (2007) Topoisomerase I-dependent viability loss in saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177: 17–30 doi:10.1534/genetics.107.074708

37. HwangJ-Y, SmithS, CeschiaA, Torres-RosellJ, AragónL, et al. (2008) Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair (Amst) 7: 1426–1436 doi:10.1016/j.dnarep.2008.05.006

38. DuanX, SarangiP, LiuX, RangiGK, ZhaoX, et al. (2009) Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol Cell 35: 657–668 doi:10.1016/j.molcel.2009.06.032

39. MankouriHW, NgoH-P, HicksonID (2009) Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol Biol Cell 20: 1683–1694 doi:10.1091/mbc.E08-08-0877

40. ChoiK, SzakalB, ChenY-H, BranzeiD, ZhaoX (2010) The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol Biol Cell 21: 2306–2314 doi:10.1091/mbc.E10-01-0050

41. OngS-E, BlagoevB, KratchmarovaI, KristensenDB, SteenH, et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376–386.

42. ChenS-H, AlbuquerqueCP, LiangJ, SuhandynataRT, ZhouH (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803–12812 doi:10.1074/jbc.M110.106989

43. AlbuquerqueCP, SmolkaMB, PayneSH, BafnaV, EngJ, et al. (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7: 1389–1396 doi:10.1074/mcp.M700468-MCP200

44. JohnsonES, BlobelG (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147: 981–994.

45. HoegeC, PfanderB, MoldovanG-L, PyrowolakisG, JentschS (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141 doi:10.1038/nature00991

46. SilverHR, NissleyJA, ReedSH, HouY-M, JohnsonES (2011) A role for SUMO in nucleotide excision repair. DNA Repair (Amst) 10: 1243–1251 doi:10.1016/j.dnarep.2011.09.013

47. TakahashiY, DulevS, LiuX, HillerNJ, ZhaoX, et al. (2008) Cooperation of sumoylated chromosomal proteins in rDNA maintenance. PLoS Genet 4: e1000215 doi:10.1371/journal.pgen.1000215

48. PsakhyeI, JentschS (2012) Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair. Cell 151: 807–820 doi:10.1016/j.cell.2012.10.021

49. SongJ, DurrinLK, WilkinsonTA, KrontirisTG, ChenY (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101: 14373–14378 doi:10.1073/pnas.0403498101

50. ArmstrongAA, MohideenF, LimaCD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483: 59–63 doi:10.1038/nature10883

51. KorenA, SoiferI, BarkaiN (2010) MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res 20: 781–790 doi:10.1101/gr.102764.109

52. ParkerJL, BucceriA, DaviesAA, HeidrichK, WindeckerH, et al. (2008) SUMO modification of PCNA is controlled by DNA. EMBO J 27: 2422–2431 doi:10.1038/emboj.2008.162

53. XieY, RubensteinEM, MattT, HochstrasserM (2010) SUMO-independent in vivo activity of a SUMO-targeted ubiquitin ligase toward a short-lived transcription factor. Genes Dev 24: 893–903 doi:10.1101/gad.1906510

54. GalantyY, BelotserkovskayaR, CoatesJ, JacksonSP (2012) RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26: 1179–1195 doi:10.1101/gad.188284.112

55. JohnsonES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–382 doi:10.1146/annurev.biochem.73.011303.074118

56. ChenXL, ReindleA, JohnsonES (2005) Misregulation of 2 microm circle copy number in a SUMO pathway mutant. Mol Cell Biol 25: 4311–4320 doi:10.1128/MCB.25.10.4311-4320.2005

57. BranzeiD, SollierJ, LiberiG, ZhaoX, MaedaD, et al. (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127: 509–522 doi:10.1016/j.cell.2006.08.050

58. ByrneKP, WolfeKH (2005) The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15: 1456–1461 doi:10.1101/gr.3672305

59. PruddenJ, PerryJJP, NieM, VashishtAA, ArvaiAS, et al. (2011) DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes. Mol Cell Biol 31: 2299–2310 doi:10.1128/MCB.05188-11

60. BoddyMN, ShanahanP, McDonaldWH, Lopez-GironaA, NoguchiE, et al. (2003) Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 23: 5939–5946.

61. MullenJR, DasM, BrillSJ (2011) Genetic evidence that polysumoylation bypasses the need for a SUMO-targeted Ub ligase. Genetics 187: 73–87 doi:10.1534/genetics.110.124347

62. ChanJE, KolodnerRD (2011) A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 7: e1002089 doi:10.1371/journal.pgen.1002089

63. StrömL, KarlssonC, LindroosHB, WedahlS, KatouY, et al. (2007) Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317: 242–245 doi:10.1126/science.1140649

64. UnalE, Heidinger-PauliJM, KoshlandD (2007) DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317: 245–248 doi:10.1126/science.1140637

65. SjögrenC, NasmythK (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11: 991–995.

66. YamamotoA, GuacciV, KoshlandD (1996) Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol 133: 99–110.

67. Cohen-FixO, KoshlandD (1997) The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc Natl Acad Sci USA 94: 14361–14366.

68. GardnerR, PutnamCW, WeinertT (1999) RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. EMBO J 18: 3173–3185 doi:10.1093/emboj/18.11.3173

69. SanchezY, BachantJ, WangH, HuF, LiuD, et al. (1999) Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286: 1166–1171.

70. PutnamCD, KolodnerRD (2010) Determination of gross chromosomal rearrangement rates. Cold Spring Harb Protoc 2010: pdb.prot5492.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#