#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Deficiency Suppresses Intestinal Tumorigenesis


Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with ApcMin/+ and AhCre+Apcfl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in ApcMin/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in ApcMin/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1.


Vyšlo v časopise: Deficiency Suppresses Intestinal Tumorigenesis. PLoS Genet 9(8): e32767. doi:10.1371/journal.pgen.1003638
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003638

Souhrn

Conditional deletion of Apc in the murine intestine alters crypt-villus architecture and function. This process is accompanied by multiple changes in gene expression, including upregulation of Cited1, whose role in colorectal carcinogenesis is unknown. Here we explore the relevance of Cited1 to intestinal tumorigenesis. We crossed Cited1 null mice with ApcMin/+ and AhCre+Apcfl/fl mice and determined the impact of Cited1 deficiency on tumour growth/initiation including tumour multiplicity, cell proliferation, apoptosis and the transcriptome. We show that Cited1 is up-regulated in both human and murine tumours, and that constitutive deficiency of Cited1 increases survival in ApcMin/+ mice from 230.5 to 515 days. However, paradoxically, Cited1 deficiency accentuated nearly all aspects of the immediate phenotype 4 days after conditional deletion of Apc, including an increase in cell death and enhanced perturbation of differentiation, including of the stem cell compartment. Transcriptome analysis revealed multiple pathway changes, including p53, PI3K and Wnt. The activation of Wnt through Cited1 deficiency correlated with increased transcription of β-catenin and increased levels of dephosphorylated β-catenin. Hence, immediately following deletion of Apc, Cited1 normally restrains the Wnt pathway at the level of β-catenin. Thus deficiency of Cited1 leads to hyper-activation of Wnt signaling and an exaggerated Wnt phenotype including elevated cell death. Cited1 deficiency decreases intestinal tumourigenesis in ApcMin/+ mice and impacts upon a number of oncogenic signaling pathways, including Wnt. This restraint imposed by Cited1 is consistent with a requirement for Cited1 to constrain Wnt activity to a level commensurate with optimal adenoma formation and maintenance, and provides one mechanism for tumour repression in the absence of Cited1.


Zdroje

1. GryfeR, SwallowC, BapatB, RedstonM, GallingerS, et al. (1997) Molecular biology of colorectal cancer. Curr Probl Cancer 21: 233–300.

2. ClarkeAR (2005) Studying the consequences of immediate loss of gene function in the intestine: APC. Biochem Soc Trans 33: 665–666.

3. SansomOJ, ReedKR, HayesAJ, IrelandH, BrinkmannH, et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18: 1385–1390.

4. YahataT, ShaoW, EndohH, HurJ, CoserKR, et al. (2001) Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev 15: 2598–2612.

5. PlisovS, TsangM, ShiG, BoyleS, YoshinoK, et al. (2005) Cited1 is a bifunctional transcriptional cofactor that regulates early nephronic patterning. J Am Soc Nephrol 16: 1632–1644.

6. SansomOJ, MenielVS, MuncanV, PhesseTJ, WilkinsJA, et al. (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446: 676–679.

7. ShiodaT, FennerMH, IsselbacherKJ (1996) msg1, a novel melanocyte-specific gene, encodes a nuclear protein and is associated with pigmentation. Proc Natl Acad Sci USA 93: 12298–12303.

8. DunwoodieSL, RodriguezTA, BeddingtonRS (1998) Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech Dev 72: 27–40.

9. RodriguezTA, SparrowDB, ScottAN, WithingtonSL, PreisJI, et al. (2004) Cited1 is required in trophoblasts for placental development and for embryo growth and survival. Mol Cell Biol 24: 228–244.

10. HowlinJ, McBryanJ, NapoletanoS, LambeT, McArdleE, et al. (2006) CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene 25: 1532–1542.

11. YahataT, de CaesteckerMP, LechleiderRJ, AndrioleS, RobertsAB, et al. (2000) The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors. J Biol Chem 275: 8825–8834.

12. ShiodaT, FennerMH, IsselbacherKJ (1997) MSG1 and its related protein MRG1 share a transcription activating domain. Gene 204: 235–241.

13. FreedmanSJ, SunZY, KungAL, FranceDS, WagnerG, et al. (2003) Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol 10: 504–512.

14. NairSS, ChaubalVA, ShiodaT, CoserKR, MojamdarM (2001) Over-expression of MSG1 transcriptional co-activator increases melanin in B16 melanoma cells: a possible role for MSG1 in melanogenesis. Pigment Cell Res 14: 206–209.

15. LovvornHN3rd, BoyleS, ShiG, ShyrY, WillsML, et al. (2007a) Wilms' tumorigenesis is altered by misexpression of the transcriptional co-activator, CITED1. J Pediatr Surg 42: 474–481.

16. LovvornHN, WestrupJ, OppermanS, BoyleS, ShiG, et al. (2007b) CITED1 expression in Wilms' tumor and embryonic kidney. Neoplasia 9: 589–600.

17. DillonRL, BrownST, LingC, Shioda, T.MullerWJ (2007) An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer. Mol Cell Biol 27: 8648–8657.

18. MugfordJW, YuJ, KobayashiA, McMahonAP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol September 15; 333(2): 312–323.

19. HendryC, RumballeB, MoritzK, LittleMH (2011) Defining and redefining the nephron progenitor population. Pediatr Nephrol Sep;26(9): 1395–406 Epub 2011 Jan 14. Review.

20. MurphyAJ, PierceJ, de CaesteckerC, TaylorC, AndersonJR, et al. (2012) SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms' tumor. J Pediatr Surg Jun;47(6): 1239–49.

21. SuAI, WiltshireT, BatalovS, LappH, ChingKA, et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A Apr 20;101(16): 6062–7.

22. AndreuP, ColnotS, GodardC, GadS, ChafeyP, et al. (2005) Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development Mar;132(6): 1443–51.

23. BatlleE, HendersonJT, BeghtelH, van den BornMM, SanchoE, et al. (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 18;111(2): 251–63.

24. PhesseTJ, ParryL, ReedKR, EwanKB, DaleTC, et al. (2008) Deficiency of Mbd2 attenuates Wnt signaling. Mol Cell Biol 28: 196094–103.

25. ShiodaT, LechleiderRJ, DunwoodieSL, LiH, YahataT, et al. (1998) Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc Natl Acad Sci USA 95: 9785–90.

26. SmythGK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.

27. WillertJ, EppingM, PollackJR, BrownPO, NusseR (2002) A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol Jul 2;2: 8.

28. GonzálezV, HurleyLH (2010) The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry Nov 16;49(45): 9706–14.

29. CleversH, NusseR (2012) Wnt/β-catenin signaling and disease. Cell Jun 8;149(6): 1192–205.

30. van de WeteringM, SanchoE, VerweijC, de LauW, OvingI, et al. (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

31. ValentaT, HausmannG, BaslerK (2012) The many faces and functions of beta-catenin. Embo J 31(12): 2714–2736.

32. LuckertK, GötschelF, SorgerPK, HechtA, JoosTO, PötzO (2011) Snapshots of protein dynamics and post-translational modifications in one experiment–beta-catenin and its functions. Mol Cell Proteomics 10(5): M110.007377.

33. HinoS, TanjiC, NakayamaKI, KikuchiA (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25: 9063–72.

34. BuchertM, AthineosD, AbudHE, BurkeZD, FauxMC, et al. (2010) Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo. PLoS Genet 15;6(1): e1000816.

35. FevrT, RobineS, LouvardD, HuelskenJ (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27: 7551–9.

36. LiH, AhmedNU, FennerMH, UedaM, IsselbacherKJ, et al. (1998) Regulation of expression of MSG1 melanocyte-specific nuclear protein in human melanocytes and melanoma cells. Exp Cell Res 242: 478–486.

37. ScognamiglioT, HyjekE, KaoJ, ChenYT (2006) Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126: 700–708.

38. SuLK, KinzlerKW, VogelsteinB, PreisingerAC, MoserAR, et al. (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256: 668–670.

39. KimK, PangKM, EvansM, HayED (2000) Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell 11: 3509–3523.

40. MurphyDJ, JunttilaMR, PouyetL, KarnezisA, ShchorsK, et al. (2008) Murphy Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14: 447–457.

41. AlbuquerqueC, BreukelC, van der LuijtR, FidalgoP, LageP, et al. (2002) The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: 1549–1560.

42. PollardP, DeheragodaM, SegditsasS, LewisA, RowanA, et al. (2009) The Apc 1322T mouse develops severe polyposis associated with submaximal nuclear beta-catenin expression. Gastroenterology 136: 2204–2213.

43. LeedhamSJ, Rodenas-CuadradoP, HowarthK, LewisA, MallappaS, et al. (2013) A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut Jan;62(1): 83–93.

44. BarkerN, van de WeteringM, CleversH 14. The intestinal stem cell. Genes Dev 2008 Jul 15;22(14): 1856–64 Review.

45. IrelandH, KempR, HoughtonC, HowardL, ClarkeAR, et al. (2004) Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126: 1236–1246.

46. ShibataH, ToyamaK, ShioyaH, ItoM, HirotaM, et al. (1997) Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278: 120–123.

47. BraultV, MooreR, KutschS, IshibashiM, RowitchDH, et al. (2001) Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128: 1253–1264.

48. GregorieffA, PintoD, BegthelH, DestréeO, KielmanM, CleversH (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129(2): 626–38.

49. Smyth GK. (2005) Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, RGentleman, VCarey, SDudoit, RIrizarry, WHuber (eds.), Springer, New York, pages 397–420.

50. WettenhallJM, SimpsonKM, SatterleyK, SmythGK (2006) AffylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics (7): 897–9.

51. BenjaminiY, HochbergY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (57): 289–300.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#