#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in


To mate, the fungal pathogen Candida albicans must undergo homozygosis at the mating-type locus and then switch from the white to opaque phenotype. Paradoxically, opaque cells were found to be unstable at physiological temperature, suggesting that mating had little chance of occurring in the host, the main niche of C. albicans. Recently, however, it was demonstrated that high levels of CO2, equivalent to those found in the host gastrointestinal tract and select tissues, induced the white to opaque switch at physiological temperature, providing a possible resolution to the paradox. Here, we demonstrate that a second signal, N-acetylglucosamine (GlcNAc), a monosaccharide produced primarily by gastrointestinal tract bacteria, also serves as a potent inducer of white to opaque switching and functions primarily through the Ras1/cAMP pathway and phosphorylated Wor1, the gene product of the master switch locus. Our results therefore suggest that signals produced by bacterial co-members of the gastrointestinal tract microbiota regulate switching and therefore mating of C. albicans.


Vyšlo v časopise: N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000806
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000806

Souhrn

To mate, the fungal pathogen Candida albicans must undergo homozygosis at the mating-type locus and then switch from the white to opaque phenotype. Paradoxically, opaque cells were found to be unstable at physiological temperature, suggesting that mating had little chance of occurring in the host, the main niche of C. albicans. Recently, however, it was demonstrated that high levels of CO2, equivalent to those found in the host gastrointestinal tract and select tissues, induced the white to opaque switch at physiological temperature, providing a possible resolution to the paradox. Here, we demonstrate that a second signal, N-acetylglucosamine (GlcNAc), a monosaccharide produced primarily by gastrointestinal tract bacteria, also serves as a potent inducer of white to opaque switching and functions primarily through the Ras1/cAMP pathway and phosphorylated Wor1, the gene product of the master switch locus. Our results therefore suggest that signals produced by bacterial co-members of the gastrointestinal tract microbiota regulate switching and therefore mating of C. albicans.


Zdroje

1. SollDR

1992 High-frequency switching in Candida albicans. Clin Microbiol Rev 5 183 203

2. SollDR

2009 Why does Candida albicans switch? FEMS Yeast 9 973 89

3. LanCY

NewportG

MurilloLA

JonesT

SchererS

2002 Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99 14907 14912

4. MillerMG

JohnsonAD

2002 White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110 293 302

5. HuangG

WangH

ChouS

NieX

ChenJ

2006 Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proc Natl Acad Sci U S A 103 12813 12818

6. SrikanthaT

BornemanAR

DanielsKJ

PujolC

WuW

2006 TOS9 regulates white-opaque switching in Candida albicans. Eukaryot Cell 5 1674 1687

7. ZordanRE

GalgoczyDJ

JohnsonAD

2006 Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proc Natl Acad Sci U S A 103 12807 12812

8. ZordanRE

MillerMG

GalgoczyDJ

TuchBB

JohnsonAD

2007 Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol 5(10) e256 doi:10.1371/journal.pbio.0050256

9. VincesMD

KumamotoCA

2007 The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology 153 2877 2884

10. KlarAJ

SrikanthaT

SollDR

2001 A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158 919 924

11. SrikanthaT

TsaiL

DanielsK

KlarAJ

SollDR

2001 The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183 4614 4625

12. HniszD

SchwarzmullerT

KuchlerK

2009 Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans. Mol Microbiol 74 1 15

13. HullCM

JohnsonAD

1999 Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285 1271 1275

14. LockhartSR

PujolC

DanielsKJ

MillerMG

JohnsonAD

PfallerMA

SollDR

2002 In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162 737 745

15. SlutskyB

StaebellM

AndersonJ

RisenL

PfallerM

SollDR

1987 “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169 189 197

16. RikkerinkEH

MageeBB

MageePT

1988 Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J Bacteriol 170 895 899

17. SrikanthaT

SollDR

1993 A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131 53 60

18. HuangG

SrikanthaT

SahniN

YiS

SollDR

2009 CO2 regulates white-to-opaque switching in Candida albicans. Curr Biol 19 330 334

19. MockRC

PollackJH

HashimotoT

1990 Carbon dioxide induces endotrophic germ tube formation in Candida albicans. Can J Microbiol 36 249 253

20. KlengelT

LiangWJ

ChaloupkaJ

RuoffC

SchroppelK

2005 Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15 2021 2026

21. GhuysenJ.-M

HakenbeckR

1994 Bacterial cell wall. Amsterdam Elsevier 581

22. SimonettiN

StrippoliV

CassoneA

1974 Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in Candida albicans. Nature 250 344 346

23. ChoT

HamatakeH

KaminishiH

HagiharaY

WatanabeK

1992 The relationship between cyclic adenosine 3′,5′-monophosphate and morphology in exponential phase Candida albicans. J Med Vet Mycol 30 35 42

24. CassoneA

SullivanPA

ShepherdMG

1985 N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans. Microbiologica 8 85 99

25. FengQ

SummersE

GuoB

FinkG

1999 Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181 6339 6346

26. RochaCR

SchroppelK

HarcusD

MarcilA

DignardD

2001 Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12 3631 3643

27. BockmühlDP

KrishnamurthyS

GeradsM

SonnebornA

ErnstJF

2001 Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42 1243 1257

28. CastillaR

PasseronS

CantoreML

1998 N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal 10 713 719

29. BahnYS

MolendaM

StaabJF

LymanCA

GordonLJ

2007 Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. Eukaryot Cell 6 2376 2390

30. WilsonD

Tutulan-CunitaA

JungW

HauserNC

HernandezR

2007 Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol Microbiol 65 841 856

31. BedellGW

SollDR

1979 Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun 26 348 354

32. BergenMS

VossE

SollDR

1990 Switching at the cellular level in the white-opaque transition of Candida albicans. J Gen Microbiol 136 1925 1936

33. CareRS

TrevethickJ

BinleyKM

SudberyPE

1999 The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34 792 798

34. BahnYS

StaabJ

SundstromP

2003 Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Mol Microbiol 50 391 409

35. JungWH

StatevaLI

2003 The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. Microbiology 149 2961 2976

36. PanX

HarashimaT

HeitmanJ

2000 Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3 567 572

37. NikawaJ

CameronS

TodaT

FergusonKM

WiglerM

1987 Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Genes Dev 1 931 937

38. CloutierM

CastillaR

BolducN

ZeladaA

MartineauP

2003 The two isoforms of the cAMP-dependent protein kinase catalytic subunit are involved in the control of dimorphism in the human fungal pathogen Candida albicans. Fungal Genet Biol 38 133 141

39. SahniN

YiS

DanielsKJ

SrikanthaT

PujolC

2009 Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans. PLoS Pathog 5(10) e1000601 doi:10.1371/journal.ppat.1000601

40. LevittMD

BondJHJr

1970 Volume, composition, and source of intestinal gas. Gastroenterology 59 921 929

41. AvundukC

2002 Manual of Gastroenterology: Diagnosis and Therapy. Philadelphia Lippincott Williams & Wilkins 505

42. O'HaraAM

ShanahanF

2006 The gastrointestinal tract flora as a forgotten organ. EMBO Rep 7 688 693

43. ChenJ

ChenJ

LaneS

LiuH

2002 A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol Microbiol 46 1335 1344

44. CaspariT

1997 Onset of gluconate-H+ symport in Schizosaccharomyces pombe is regulated by the kinases Wis1 and Pka1, and requires the gti1+ gene product. J Cell Sci 110 2599 2608

45. MadhaniHD

FinkGR

1998 The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8 348 353

46. AndersonJM

SollDR

1987 Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol 169 5579 5588

47. AndersonJ

MihalikR

SollDR

1990 Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 172 224 235

48. PujolC

DanielsKJ

LockhartSR

SrikanthaT

RadkeJB

2004 The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot Cell 3 1015 1027

49. WilsonRB

DavisD

EnloeBM

MitchellAP

2000 A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16 65 70

50. StraussA

MichelS

MorschhäuserJ

2001 Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans. J Bacteriol 183 3761 3769

51. WilsonRB

DavisD

MitchellAP

1999 Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181 1868 1874

52. ParkYN

MorschhüuserJ

2005 Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryot Cell 4 1328 1342

53. KeSH

MadisonEL

1997 Rapid and efficient site-directed mutagenesis by single-tube ‘megaprimer’ PCR method. Nucleic Acids Res 25 3371 3372

54. YiS

SahniN

PujolC

DanielsKJ

SrikanthaT

2009 A Candida albicans-specific region of the alpha-pheromone receptor plays a selective role in the white cell pheromone response. Mol Microbiol 71 925 947

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#