#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

RNAIII Binds to Two Distant Regions of mRNA to Arrest Translation and Promote mRNA Degradation


Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.


Vyšlo v časopise: RNAIII Binds to Two Distant Regions of mRNA to Arrest Translation and Promote mRNA Degradation. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000809
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000809

Souhrn

Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.


Zdroje

1. NovickRP

RossHF

ProjanSJ

KornblumJ

KreiswirthB

1993 Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12 3967 3975

2. NovickRP

GeisingerE

2008 Quorum sensing in staphylococci. Annu Rev Genet 42 541 564

3. QueckSY

Jameson-LeeM

VillaruzAE

BachTH

KhanBA

2008 RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32 150 158

4. NovickRP

2003 Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48 1429 1449

5. DunmanPM

MurphyE

HaneyS

PalaciosD

Tucker-KelloggG

2001 Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183 7341 7353

6. SomervilleGA

ProctorRA

2009 At the crossroads of bacterial metabolism and virulence synthesis in Staphylococci. Microbiol Mol Biol Rev 73 233 248

7. Toledo-AranaA

RepoilaF

CossartP

2007 Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10 182 188

8. WatersLS

StorzG

2009 Regulatory RNAs in bacteria. Cell 136 615 628

9. MorfeldtE

TaylorD

von GabainA

ArvidsonS

1995 Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14 4569 4577

10. GeisingerE

AdhikariRP

JinR

RossHF

NovickRP

2006 Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61 1038 1048

11. HuntzingerE

BoissetS

SaveanuC

BenitoY

GeissmannT

2005 Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24 824 835

12. BoissetS

GeissmannT

HuntzingerE

FechterP

BendridiN

2007 Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21 1353 1366

13. LebeauC

VandeneschF

GreenlandT

NovickRP

EtienneJ

1994 Coagulase expression in Staphylococcus aureus is positively and negatively modulated by an agr-dependent mechanism. J Bacteriol 176 5534 5536

14. PoyartC

Trieu-CuotP

1997 A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to β-galactosidase in gram-positive bacteria. FEMS Microbiol Lett 156 193 198

15. BrantlS

2007 Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10 102 109

16. WagnerEG

AltuviaS

RombyP

2002 Antisense RNAs in bacteria and their genetic elements. Adv Genet 46 361 398

17. HartzD

McPheetersDS

TrautR

GoldL

1988 Extension inhibition analysis of translation initiation complexes. Methods Enzymol 164 419 425

18. ChevalierC

HuntzingerE

FechterP

BoissetS

VandeneschF

2008 Staphylococcus aureus endoribonuclease III purification and properties. Methods Enzymol 447 309 327

19. KawabataS

MoritaT

IwanagaS

IgarashiH

1985 Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J Biochem 98 1603 1614

20. MathyN

BenardL

PellegriniO

DaouR

WenT

2007 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129 681 692

21. Daou-ChaboR

MathyN

BenardL

CondonC

2009 Ribosomes initiating translation of the hbs mRNA protect it from 5′-to-3′ exoribonucleolytic degradation by RNase J1. Mol Microbiol 71 1538 1550

22. HambraeusG

KarhumaaK

RutbergB

2002 A 5′ stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148 1795 1803

23. AibaH

2007 Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10 134 139

24. BrennanRG

LinkTM

2007 Hfq structure, function and ligand binding. Curr Opin Microbiol 10 125 133

25. BohnC

RigoulayC

BoulocP

2007 No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7 10

26. LeeAJ

CrothersDM

1998 The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence. Structure 6 993 1005

27. Said-SalimB

DunmanPM

McAleeseFM

MacapagalD

MurphyE

2003 Global regulation of Staphylococcus aureus genes by Rot. J Bacteriol 185 610 619

28. SharmaCM

DarfeuilleF

PlantingaTH

VogelJ

2007 A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21 2804 2817

29. PapenfortK

VogelJ

2009 Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160 278 287

30. PapenfortK

PfeifferV

LucchiniS

SonawaneA

HintonJC

2008 Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol 68 890 906

31. De LayN

GottesmanS

2009 The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 191 461 476

32. GeissmannT

ChevalierC

CrosMJ

BoissetS

FechterP

2009 A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37 7239 7257

33. DarfeuilleF

UnosonC

VogelJ

WagnerEG

2007 An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 26 381 392

34. BouvierM

SharmaCM

MikaF

NierhausKH

VogelJ

2008 Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 32 827 837

35. PfeifferV

PapenfortK

LucchiniS

HintonJC

VogelJ

2009 Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16 840 846

36. OpdykeJA

KangJG

StorzG

2004 GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186 6698 6705

37. JanzonL

ArvidsonS

1990 The role of the Δ-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9 1391 1399

38. BenitoY

KolbFA

RombyP

LinaG

EtienneJ

2000 Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6 668 679

39. SambrookJ

FritschE

ManiatisT

1989 Molecular Cloning: a laboratory manual. Cold Spring Harbor, New York, USA Cold Spring Harbor Press

40. PerssonC

WagnerEG

NordstromK

1988 Control of replication of plasmid R1: kinetics of in vitro interaction between the antisense RNA, CopA, and its target, CopT. EMBO J 7 3279 3288

41. DasR

LaederachA

PearlmanSM

HerschlagD

AltmanRB

2005 SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11 344 354

42. FechterP

ChevalierC

YusupovaG

YusupovM

RombyP

2009 Ribosomal initiation complexes probed by toeprinting and effect of trans-acting translational regulators in bacteria. Methods Mol Biol 540 247 263

43. MassireC

WesthofE

1998 MANIP: an interactive tool for modelling RNA. J Mol Graph Model 16 197 205, 255–7

44. MasquidaB

WesthofE

2005 Modeling the architecture of structured RNAs within a modular and hierarchical framework. Handbook of RNA Biochemistry 536 545

45. KreiswirthBN

LofdahlS

BetleyMJ

O'ReillyM

SchlievertPM

1983 The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305 709 712

46. PengHL

NovickRP

KreiswirthB

KornblumJ

SchlievertP

1988 Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 170 4365 4372

47. HorinouchiS

WeisblumB

1982 Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol 150 804 814

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#