Serological Profiling of a Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia
Candida albicans in the immunocompetent host is a benign member of the human microbiota. Though, when host physiology is disrupted, this commensal-host interaction can degenerate and lead to an opportunistic infection. Relatively little is known regarding the dynamics of C. albicans colonization and pathogenesis. We developed a C. albicans cell surface protein microarray to profile the immunoglobulin G response during commensal colonization and candidemia. The antibody response from the sera of patients with candidemia and our negative control groups indicate that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans. This report also identifies cell surface antigens that are specific to different phases (i.e. acute, early and mid convalescence) of candidemia. We identified a set of thirteen cell surface antigens capable of distinguishing acute candidemia from healthy individuals and uninfected hospital patients with commensal colonization. Interestingly, a large proportion of these cell surface antigens are involved in either oxidative stress or drug resistance. In addition, we identified 33 antigenic proteins that are enriched in convalescent sera of the candidemia patients. Intriguingly, we found within this subset an increase in antigens associated with heme-associated iron acquisition. These findings have important implications for the mechanisms of C. albicans colonization as well as the development of systemic infection.
Vyšlo v časopise:
Serological Profiling of a Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000827
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000827
Souhrn
Candida albicans in the immunocompetent host is a benign member of the human microbiota. Though, when host physiology is disrupted, this commensal-host interaction can degenerate and lead to an opportunistic infection. Relatively little is known regarding the dynamics of C. albicans colonization and pathogenesis. We developed a C. albicans cell surface protein microarray to profile the immunoglobulin G response during commensal colonization and candidemia. The antibody response from the sera of patients with candidemia and our negative control groups indicate that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans. This report also identifies cell surface antigens that are specific to different phases (i.e. acute, early and mid convalescence) of candidemia. We identified a set of thirteen cell surface antigens capable of distinguishing acute candidemia from healthy individuals and uninfected hospital patients with commensal colonization. Interestingly, a large proportion of these cell surface antigens are involved in either oxidative stress or drug resistance. In addition, we identified 33 antigenic proteins that are enriched in convalescent sera of the candidemia patients. Intriguingly, we found within this subset an increase in antigens associated with heme-associated iron acquisition. These findings have important implications for the mechanisms of C. albicans colonization as well as the development of systemic infection.
Zdroje
1. BendelCM
2003 Colonization and epithelial adhesion in the pathogenesis of neonatal candidiasis. Semin Perinatol 27 357 364
2. Kwon-ChungKJ
BennettJE
1992 Medical mycology. Philadelphia: Lea & Febiger. ix, 866 p
3. KohAY
KohlerJR
CoggshallKT
Van RooijenN
PierGB
2008 Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4 e35 doi:10.1371/journal.ppat.0040035
4. ColeGT
HalawaAA
AnaissieEJ.
The Role of the Gastrointestinal Tract in Hematogenous Candidiasis: From the Laboratory to the Bedside. Clinical Infectious Diseases 22 S73 S88
5. RaadI
HannaH
BoktourM
GirgawyE
DanawiH
2004 Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis 38 1119 1127
6. BrownAJ
OddsFC
GowNA
2007 Infection-related gene expression in Candida albicans. Curr Opin Microbiol 10 307 313
7. Rubin-BejeranoI
FraserI
GrisafiP
FinkGR
2003 Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100 11007 11012
8. LorenzMC
BenderJA
FinkGR
2004 Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3 1076 1087
9. FradinC
KretschmarM
NichterleinT
GaillardinC
d'EnfertC
2003 Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47 1523 1543
10. FradinC
De GrootP
MacCallumD
SchallerM
KlisF
2005 Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56 397 415
11. ZakikhanyK
NaglikJR
Schmidt-WesthausenA
HollandG
SchallerM
2007 In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9 2938 2954
12. EckertSE
HeinzWJ
ZakikhanyK
ThewesS
HaynesK
2007 PGA4, a GAS homologue from Candida albicans, is up-regulated early in infection processes. Fungal Genet Biol 44 368 377
13. ChengS
ClancyCJ
CheckleyMA
HandfieldM
HillmanJD
2003 Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol 48 1275 1288
14. BerenguerJ
BuckM
WitebskyF
StockF
PizzoP
1993 Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis 17 103 109
15. PitarchA
AbianJ
CarrascalM
SanchezM
NombelaC
2004 Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics 4 3084 3106
16. PitarchA
Diez-OrejasR
MoleroG
PardoM
SanchezM
2001 Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics 1 550 559
17. PitarchA
JimenezA
NombelaC
GilC
2006 Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5 79 96
18. HanashS
2003 Disease proteomics. Nature 422 226 232
19. StellerS
AngenendtP
CahillDJ
HeubergerS
LehrachH
2005 Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections. Proteomics 5 2048 2055
20. ZhuH
HuS
JonaG
ZhuX
KreiswirthN
2006 Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci U S A 103 4011 4016
21. LiB
JiangL
SongQ
YangJ
ChenZ
2005 Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect Immun 73 3734 3739
22. ButlerG
RasmussenMD
LinMF
SantosMA
SakthikumarS
2009 Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459 657 662
23. NaglikJR
FostiraF
RupraiJ
StaabJF
ChallacombeSJ
2006 Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol 55 1323 1327
24. BassilanaM
BlythJ
ArkowitzRA
2003 Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans. Eukaryotic Cell 2 9 18
25. GaleCA
BendelCM
McClellanM
HauserM
BeckerJM
1998 Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279 1355 1358
26. StaabJF
BradwaySD
FidelPL
SundstromP
1999 Adhesive and Mammalian Transglutaminase Substrate Properties of Candida albicans Hwp1. Science 283 1535 1538
27. FuY
IbrahimA
SheppardD
ChenY
FrenchS
2002 Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44 61 72
28. PhanQT
MyersCL
FuY
SheppardDC
YeamanMR
2007 Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5 e64 doi:10.1371/journal.pbio.0050064
29. GaurNK
KlotzSA
HendersonRL
1999 Overexpression of the Candida albicans ALA1 Gene in Saccharomyces cerevisiae Results in Aggregation following Attachment of Yeast Cells to Extracellular Matrix Proteins, Adherence Properties Similar to Those of Candida albicans. Infect Immun 67 6040 6047
30. BirseCE
IrwinMY
FonziWA
SypherdPS
1993 Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 61 3648 3655
31. BaileyD
FeldmannP
BoveyM
GowN
BrownA
1996 The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178 5353 5360
32. Alberti-SeguiC
MoralesAJ
XingH
KesslerMM
WillinsDA
2004 Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 21 285 302
33. ThewesS
KretschmarM
ParkH
SchallerM
FillerSG
2007 In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63 1606 1628
34. RomanE
NombelaC
PlaJ
2005 The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans. Mol Cell Biol 25 10611 10627
35. EnjalbertB
SmithDA
CornellMJ
AlamI
NichollsS
2006 Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17 1018 1032
36. CannonRD
LampingE
HolmesAR
NiimiK
BaretPV
2009 Efflux-Mediated Antifungal Drug Resistance. Clin Microbiol Rev 22 291 321
37. BarbourAG
JasinskasA
KayalaMA
DaviesDH
SteereAC
2008 A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun 76 3374 3389
38. KnightSAB
VilaireG
LesuisseE
DancisA
2005 Iron Acquisition from Transferrin by Candida albicans Depends on the Reductive Pathway. Infect Immun 73 5482 5492
39. ProtchenkoO
Rodriguez-SuarezR
AndrophyR
BusseyH
PhilpottCC
2006 A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem 281 21445 21457
40. WeissmanZ
KornitzerD
2004 A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53 1209 1220
41. BraunBR
HeadWS
WangMX
JohnsonAD
2000 Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156 31 44
42. MatthewsR
HodgettsS
BurnieJ
1995 Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis. J Infect Dis 171 1668 1671
43. MatthewsR
BurnieJ
TabaqchaliS
1984 Immunoblot analysis of the serological response in systemic candidosis. Lancet 2 1415 1418
44. HubeB
2004 From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7 336 341
45. BiswasS
Van DijckP
DattaA
2007 Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans. Microbiol Mol Biol Rev 71 348 376
46. KinnebergKM
BendelCM
JechorekRP
CebelinskiEA
GaleCA
1999 Effect of INT1 Gene on Candida albicans Murine Intestinal Colonization. Journal of Surgical Research 87 245 251
47. BendelC
KinnebergK
JechorekR
GaleC
ErlandsenS
1999 Systemic infection following intravenous inoculation of mice with Candida albicans int1 mutant strains. Mol Genet Metab 67 343 351
48. WhiteSJ
RosenbachA
LephartP
NguyenD
BenjaminA
2007 Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3 e184 doi:10.1371/journal.ppat.0030184
49. GiraldoP
Von NonwaskonskiA
GomesFAM
LinharesI
NevesNA
2000 Vaginal colonization by Candida in asymptomatic women with and without a history of recurrent vulvovaginal candidiasis. Obstetrics & Gynecology 95 413 416
50. TomsikovaA
TomaierovaV
KotalL
NovackovaD
1980 An immunologic study of vaginal candidiasis. Int J Gynaecol Obstet 18 398 403
51. SosinskaGJ
de GrootPWJ
Teixeira de MattosMJ
DekkerHL
de KosterCG
2008 Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154 510 520
52. LanC
RodarteG
MurilloL
JonesT
DavisR
2004 Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 53 1451 1469
53. RamsdaleM
SelwayL
SteadD
WalkerJ
YinZ
2008 MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans. Mol Biol Cell 19 4393 4403
54. CannonRD
LampingE
HolmesAR
NiimiK
TanabeK
2007 Candida albicans drug resistance another way to cope with stress. Microbiology 153 3211 3217
55. EnjalbertB
MacCallumDM
OddsFC
BrownAJ
2007 Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun 75 2143 2151
56. PendrakML
YanSS
RobertsDD
2004 Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys 426 148 156
57. MatthewsRC
RiggG
HodgettsS
CarterT
ChapmanC
2003 Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob Agents Chemother 47 2208 2216
58. PachlJ
SvobodaP
JacobsF
VandewoudeK
van der HovenB
2006 A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42 1404 1413
59. HanY
RiesselmanMH
CutlerJE
2000 Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 68 1649 1654
60. HanY
UlrichMA
CutlerJE
1999 Candida albicans mannan extract-protein conjugates induce a protective immune response against experimental candidiasis. J Infect Dis 179 1477 1484
61. ClancyCJ
NguyenML
ChengS
HuangH
FanG
2008 Immunoglobulin G responses to a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis. J Clin Microbiol 46 1647 1654
62. BraunBR
van Het HoogM
d'EnfertC
MartchenkoM
DunganJ
2005 A human-curated annotation of the Candida albicans genome. PLoS Genet 1 e1 doi:10.1371/journal.pgen.0010001
63. FanJ
ChaturvediV
ShenSH
2002 Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 55 336 346
64. MonteolivaL
MatasML
GilC
NombelaC
PlaJ
2002 Large-scale identification of putative exported proteins in Candida albicans by genetic selection. Eukaryot Cell 1 514 525
65. De GrootPW
HellingwerfKJ
KlisFM
2003 Genome-wide identification of fungal GPI proteins. Yeast 20 781 796
66. UrbanC
SohnK
LottspeichF
BrunnerH
RuppS
2003 Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett 544 228 235
67. DaviesDH
LiangX
HernandezJE
RandallA
HirstS
2005 Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102 547 552
68. IdekerT
ThorssonV
SiegelAF
HoodLE
2000 Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data. Journal of Computational Biology 7 805 817
69. BaldiP
LongAD
2001 A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17 509 519
70. DurbinBP
HardinJS
HawkinsDM
RockeDM
2002 A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18 Suppl 1 S105 110
71. SundareshS
DoolanDL
HirstS
MuY
UnalB
2006 Identification of humoral immune responses in protein microarrays using DNA microarray data analysis techniques. Bioinformatics 22 1760 1766
72. SundareshS
RandallA
UnalB
PetersenJM
BelisleJT
2007 From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics 23 i508 518
73. HuberW
von HeydebreckA
SultmannH
PoustkaA
VingronM
2002 Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 Suppl 1 S96 104
74. KreilDP
KarpNA
LilleyKS
2004 DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20 2026 2034
75. BarbacioruCC
WangY
CanalesRD
SunYA
KeysDN
2006 Effect of various normalization methods on Applied Biosystems expression array system data. BMC Bioinformatics 7 533
76. SarkarD
ParkinR
WymanS
BendoraiteA
SatherC
2009 Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res 37 e17
77. BaldiP
Brunak Sr
2001 Bioinformatics: the machine learning approach: MIT Press. 400 p
78. HochbergY
BenjaminiY
1990 More powerful procedures for multiple significance testing. Stat Med 9 811 818
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 3
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Binds and Protects a Nuclear Noncoding RNA from Cellular RNA Decay Pathways
- Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors
- Perforin and IL-2 Upregulation Define Qualitative Differences among Highly Functional Virus-Specific Human CD8 T Cells
- Inhibition of Macrophage Migration Inhibitory Factor Ameliorates Ocular -Induced Keratitis