Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein -Glycosylation
Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.
Vyšlo v časopise:
Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein -Glycosylation. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000819
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000819
Souhrn
Lipopolysaccharide (LPS) is a major component on the surface of Gram negative bacteria and is composed of lipid A-core and the O antigen polysaccharide. O polysaccharides of the gastric pathogen Helicobacter pylori contain Lewis antigens, mimicking glycan structures produced by human cells. The interaction of Lewis antigens with human dendritic cells induces a modulation of the immune response, contributing to the H. pylori virulence. The amount and position of Lewis antigens in the LPS varies among H. pylori isolates, indicating an adaptation to the host. In contrast to most bacteria, the genes for H. pylori O antigen biosynthesis are spread throughout the chromosome, which likely contributed to the fact that the LPS assembly pathway remained uncharacterized. In this study, two enzymes typically involved in LPS biosynthesis were found encoded in the H. pylori genome; the initiating glycosyltransferase WecA, and the O antigen ligase WaaL. Fluorescence microscopy and analysis of LPS from H. pylori mutants revealed that WecA and WaaL are involved in LPS production. Activity of WecA was additionally demonstrated with complementation experiments in Escherichia coli. WaaL ligase activity was shown in vitro. Analysis of the H. pylori genome failed to detect a flippase typically involved in O antigen synthesis. Instead, we identified a homolog of a flippase involved in protein N-glycosylation in other bacteria, although this pathway is not present in H. pylori. This flippase named Wzk was essential for O antigen display in H. pylori and was able to transport various glycans in E. coli. Whereas the O antigen mutants showed normal swimming motility and injection of the toxin CagA into host cells, the uptake of DNA seemed to be affected. We conclude that H. pylori uses a novel LPS biosynthetic pathway, evolutionarily connected to bacterial protein N-glycosylation.
Zdroje
1. RaetzCR
WhitfieldC
2002 Lipopolysaccharide endotoxins. Annu Rev Biochem 71 635 700
2. LoganRP
1994 Helicobacter pylori and gastric cancer. Lancet 344 1078 1079
3. Simoons-SmitIM
AppelmelkBJ
VerboomT
NegriniR
PennerJL
1996 Typing of Helicobacter pylori with monoclonal antibodies against Lewis antigens in lipopolysaccharide. J Clin Microbiol 34 2196 2200
4. MoranAP
2008 Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr Res 343 1952 1965
5. BergmanMP
EngeringA
SmitsHH
van VlietSJ
van BodegravenAA
2004 Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 200 979 990
6. NilssonC
SkoglundA
MoranAP
AnnukH
EngstrandL
2006 An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc Natl Acad Sci U S A 103 2863 2868
7. AppelmelkBJ
MartinSL
MonteiroMA
ClaytonCA
McColmAA
1999 Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect Immun 67 5361 5366
8. SkoglundA
BackhedHK
NilssonC
BjorkholmB
NormarkS
2009 A changing gastric environment leads to adaptation of lipopolysaccharide variants in Helicobacter pylori populations during colonization. PLoS ONE 4 e5885 doi:10.1371/journal.pone.0005885
9. BergmanM
Del PreteG
van KooykY
AppelmelkB
2006 Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat Rev Microbiol 4 151 159
10. RaetzCR
ReynoldsCM
TrentMS
BishopRE
2007 Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76 295 329
11. Meier-DieterU
BarrK
StarmanR
HatchL
RickPD
1992 Nucleotide sequence of the Escherichia coli rfe gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the rfe-rff gene cluster. J Biol Chem 267 746 753
12. LehrerJ
VigeantKA
TatarLD
ValvanoMA
2007 Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J Bacteriol 189 2618 2628
13. CuthbertsonL
PowersJ
WhitfieldC
2005 The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280 30310 30319
14. WhitfieldC
2006 Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75 39 68
15. AppelmelkBJ
ShiberuB
TrinksC
TapsiN
ZhengPY
1998 Phase variation in Helicobacter pylori lipopolysaccharide. Infect Immun 66 70 76
16. GeisG
SuerbaumS
ForsthoffB
LeyingH
OpferkuchW
1993 Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 38 371 377
17. SherburneR
TaylorDE
1995 Helicobacter pylori expresses a complex surface carbohydrate, Lewis X. Infect Immun 63 4564 4568
18. KaniukNA
VinogradovE
WhitfieldC
2004 Investigation of the structural requirements in the lipopolysaccharide core acceptor for ligation of O antigens in the genus Salmonella: WaaL “ligase” is not the sole determinant of acceptor specificity. J Biol Chem 279 36470 36480
19. AbeyrathnePD
LamJS
2007 WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A-core. Mol Microbiol 65 1345 1359
20. MoranAP
2007 Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A. Int J Med Microbiol 297 307 319
21. FeldmanMF
WackerM
HernandezM
HitchenPG
MaroldaCL
2005 Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102 3016 3021
22. WackerM
LintonD
HitchenPG
Nita-LazarM
HaslamSM
2002 N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298 1790 1793
23. KowarikM
NumaoS
FeldmanMF
SchulzBL
CallewaertN
2006 N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314 1148 1150
24. FaridmoayerA
FentabilMA
HauratMF
YiW
WoodwardR
2008 Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem 283 34596 34604
25. AlaimoC
CatreinI
MorfL
MaroldaCL
CallewaertN
2006 Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. Embo J 25 967 976
26. ReevesPR
HobbsM
ValvanoMA
SkurnikM
WhitfieldC
1996 Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4 495 503
27. HofreuterD
OdenbreitS
HaasR
2001 Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41 379 391
28. BackertS
SelbachM
2008 Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 10 1573 1581
29. SuerbaumS
JosenhansC
2007 Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5 441 452
30. JuhasM
van der MeerJR
GaillardM
HardingRM
HoodDW
2009 Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33 376 393
31. SzymanskiCM
WrenBW
2005 Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3 225 237
32. MarsdenGL
LiJ
EverestPH
LawsonAJ
KetleyJM
2009 Creation of a large deletion mutant of Campylobacter jejuni reveals that the lipooligosaccharide gene cluster is not required for viability. J Bacteriol 191 2392 2399
33. JeonB
MuraokaW
ScuphamA
ZhangQ
2009 Roles of lipooligosaccharide and capsular polysaccharide in antimicrobial resistance and natural transformation of Campylobacter jejuni. J Antimicrob Chemother 63 462 468
34. DykxhoornDM
St PierreR
LinnT
1996 A set of compatible tac promoter expression vectors. Gene 177 133 136
35. WangY
TaylorDE
1990 Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94 23 28
36. CouturierMR
TascaE
MontecuccoC
SteinM
2006 Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74 273 281
37. AlmRA
LingLS
MoirDT
KingBL
BrownED
1999 Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397 176 180
38. CovacciA
CensiniS
BugnoliM
PetraccaR
BurroniD
1993 Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 90 5791 5795
39. StrahleU
BladerP
AdamJ
InghamPW
1994 A simple and efficient procedure for non-isotopic in situ hybridization to sectioned material. Trends Genet 10 75 76
40. CouturierMR
SteinM
2008 Helicobacter pylori produces unique filaments upon host contact in vitro. Can J Microbiol 54 537 548
41. MaroldaCL
LahiryP
VinesE
SaldiasS
ValvanoMA
2006 Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347 237 252
42. TsaiCM
FraschCE
1982 A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119 115 119
43. FeldmanMF
MaroldaCL
MonteiroMA
PerryMB
ParodiAJ
1999 The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274 35129 35138
44. LintonD
DorrellN
HitchenPG
AmberS
KarlyshevAV
2005 Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55 1695 1703
45. MaroldaCL
VicarioliJ
ValvanoMA
2004 Wzx proteins involved in biosynthesis of O antigen function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150 4095 4105
46. ShevchenkoA
WilmM
VormO
MannM
1996 Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68 850 858
47. IelpiL
CousoR
DankertM
1981 Lipid-linked intermediates in the biosynthesis of xanthan gum. FEBS Lett 130 253 256
48. OsbornMJ
1963 Studies on the Gram-Negative Cell Wall. I. Evidence for the role of 2-keto- 3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc Natl Acad Sci U S A 50 499 506
49. CendronL
CouturierM
AngeliniA
BarisonN
SteinM
2009 The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion. J Mol Biol 386 204 217
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 3
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Binds and Protects a Nuclear Noncoding RNA from Cellular RNA Decay Pathways
- Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors
- Perforin and IL-2 Upregulation Define Qualitative Differences among Highly Functional Virus-Specific Human CD8 T Cells
- Inhibition of Macrophage Migration Inhibitory Factor Ameliorates Ocular -Induced Keratitis