#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in


During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections.


Vyšlo v časopise: YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000804
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000804

Souhrn

During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections.


Zdroje

1. GovanDVJR

1996 Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60 539 574

2. SmithEE

BuckleyDG

WuZ

SaenphimmachakC

HoffmanLR

2006 Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103 8487 8492

3. HausslerS

ZieglerI

LottelA

von GotzF

RohdeM

2003 Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52 295 301

4. KirisitsMJ

ProstL

StarkeyM

ParsekMR

2005 Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71 4809 4821

5. HausslerS

TummlerB

WeissbrodtH

RohdeM

SteinmetzI

1999 Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29 621 625

6. ReinhardtA

KohlerT

WoodP

RohnerP

DumasJL

2007 Development and persistence of antimicrobial resistance in Pseudomonas aeruginosa: a longitudinal observation in mechanically ventilated patients. Antimicrob Agents Chemother 51 1341 1350

7. HausslerS

2004 Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6 546 551

8. HausslerS

LehmannC

BreselgeC

RohdeM

ClassenM

2003 Fatal outcome of lung transplantation in cystic fibrosis patients due to small-colony variants of the Burkholderia cepacia complex. Eur J Clin Microbiol Infect Dis 22 249 253

9. D'ArgenioDA

CalfeeMW

RaineyPB

PesciEC

2002 Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184 6481 6489

10. DrenkardE

AusubelFM

2002 Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416 740 743

11. MeissnerA

WildV

SimmR

RohdeM

ErckC

2007 Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9 2475 2485

12. HickmanJW

TifreaDF

HarwoodCS

2005 A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102 14422 14427

13. StarkeyM

HickmanJH

MaL

ZhangN

De LongS

2009 Pseudomonas aeruginosa rugose small colony variants have adaptations likely to promote persistence in the cystic fibrosis lung. J Bacteriol 191 3492 3503

14. JenalU

2004 Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol 7 185 191

15. GalperinMY

2005 A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5 35

16. RossP

WeinhouseH

AloniY

MichaeliD

Weinberger-OhanaP

1987 Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325 279 281

17. SchmidtAJ

RyjenkovDA

GomelskyM

2005 The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187 4774 4781

18. PaulR

WeiserS

AmiotNC

ChanC

SchirmerT

2004 Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18 715 727

19. ChristenM

ChristenB

FolcherM

SchauerteA

JenalU

2005 Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP. J Biol Chem 280 30829 30837

20. RyjenkovDA

TarutinaM

MoskvinOV

GomelskyM

2005 Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain. J Bacteriol 187 1792 1798

21. ChristenB

ChristenM

PaulR

SchmidF

FolcherM

2006 Allosteric control of cyclic di-GMP signaling. J Biol Chem 281 32015 32024

22. GjermansenM

RagasP

SternbergC

MolinS

Tolker-NielsenT

2005 Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7 894 906

23. SpiersAJ

BohannonJ

GehrigSM

RaineyPB

2003 Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50 15 27

24. SpiersAJ

KahnSG

BohannonJ

TravisanoM

RaineyPB

2002 Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. I. Genetic and Phenotypic Bases of Wrinkly Spreader Fitness. Genetics 161 33 46

25. LeeVT

MatewishJM

KesslerJL

HyodoM

HayakawaY

LoryS

2007 A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65 1474 1484

26. KulasekaraHD

VentreI

KulasekaraBR

LazdunskiA

FillouxA

2005 A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55 368 380

27. KazmierczakBI

LebronMB

MurrayTS

2006 Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60 1026 1043

28. SimmR

MorrM

KaderA

NimtzM

RomlingU

2004 GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53 1123 1134

29. KulasakaraH

LeeV

BrencicA

LiberatiN

UrbachJ

2006 Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103 2839 2844

30. TischlerAD

CamilliA

2005 Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73 5873 5882

31. MerighiM

LeeVT

HyodoM

HayakawaY

LoryS

2007 The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65 876 895

32. HickmanJW

HarwoodCS

2008 Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69 376 389

33. KuchmaSL

ConnollyJP

O'TooleGA

2005 A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187 1441 1454

34. HuangB

WhitchurchCB

MattickJS

2003 FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185 7068 7076

35. AlmRA

BoderoAJ

FreePD

MattickJS

1996 Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol 178 46 53

36. MerrittJH

BrothersKM

KuchmaSL

O'TooleGA

2007 SadC Reciprocally Influences Biofilm Formation and Swarming Motility via Modulation of Exopolysaccharide Production and Flagellar Function. J Bacteriol 189 8154 8164

37. BantinakiE

KassenR

KnightCG

RobinsonZ

SpiersAJ

2007 Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176 441 453

38. GuvenerZT

HarwoodCS

2007 Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 66 1459 1473

39. GallagherLA

ManoilC

2001 Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183 6207 6214

40. CaiazzaNC

O'TooleGA

2004 SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186 4476 4485

41. CaiazzaNC

MerrittJH

BrothersKM

O'TooleGA

2007 Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189 3603 3612

42. KuchmaSL

BrothersKM

MerrittJH

LiberatiNT

AusubelFM

2007 BifA, a Cyclic-Di-GMP Phosphodiesterase, Inversely Regulates Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14. J Bacteriol 189 8165 8178

43. HoffmanLR

D'ArgenioDA

MacCossMJ

ZhangZ

JonesRA

2005 Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436 1171 1175

44. GotohH

ZhangY

DalloSF

HongS

KasaraneniN

2008 Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 159 294 302

45. KlebensbergerJ

LautenschlagerK

BresslerD

WingenderJ

PhilippB

2007 Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ Microbiol 9 2247 2259

46. MillerJH

1972 Experiments in molecular genetics. 352 355 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

47. KovachME

ElzerPH

HillDS

RobertsonGT

FarrisMA

1995 Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166 175 176

48. GuzmanLM

BelinD

CarsonMJ

BeckwithJ

1995 Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177 4121 4130

49. ChoiKH

GaynorJB

WhiteKG

LopezC

BosioCM

2005 A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2 443 448

50. HoSN

HuntHD

HortonRM

PullenJK

PeaseLR

1989 Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77 51 59

51. HeebS

ItohY

NishijyoT

SchniderU

KeelC

2000 Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant Microbe Interact 13 232 237

52. AldridgeP

PaulR

GoymerP

RaineyP

JenalU

2003 Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47 1695 1708

53. RobertsRC

MohrCD

ShapiroL

1996 Developmental programs in bacteria. Curr Top Dev Biol 34 207 257

54. YuD

EllisHM

LeeEC

JenkinsNA

CopelandNG

2000 An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97 5978 5983

55. UzzauS

Figueroa-BossiN

RubinoS

BossiL

2001 Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98 15264 15269

56. KarimovaG

UllmannA

LadantD

2001 Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3 73 82

57. WinsonMK

SwiftS

HillPJ

SimsCM

GriesmayrG

1998 Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163 193 202

58. ValletI

DiggleSP

StaceyRE

CamaraM

VentreI

2004 Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186 2880 2890

59. VentreI

GoodmanAL

Vallet-GelyI

VasseurP

SosciaC

2006 Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103 171 176

60. MorganAF

1979 Transduction of Pseudomonas aeruginosa with a mutant of bacteriophage E79. J Bacteriol 139 137 140

61. O'TooleGA

KolterR

1998 Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28 449 461

62. ChoiKH

SchweizerHP

2005 An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 5 30

63. MerrittJH

KadouriDE

O'TooleGA

2005 Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1: Unit 1B 1

64. RabinowitzJD

KimballE

2007 Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79 6167 6173

65. MichaelisS

InouyeH

OliverD

BeckwithJ

1983 Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J Bacteriol 154 366 374

66. KarimovaG

PidouxJ

UllmannA

LadantD

1998 A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95 5752 5756

67. WagnerT

SoongG

SokolS

SaimanL

PrinceA

2005 Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest 128 912 919

68. KristianSA

BirkenstockTA

SauderU

MackD

GotzF

2008 Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197 1028 1035

69. ParsonsLM

LinF

OrbanJ

2006 Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45 2122 2128

70. BendtsenJD

NielsenH

von HeijneG

BrunakS

2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795

71. SchultzJ

MilpetzF

BorkP

PontingCP

1998 SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95 5857 5864

72. SodingJ

BiegertA

LupasAN

2005 The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33 W244 248

73. DuerigA

AbelS

FolcherM

NicollierM

SchwedeT

2009 Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23 93 104

74. PaulR

AbelS

WassmannP

BeckA

HeerklotzH

2007 Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282 29170 29177

75. WassmannP

ChanC

PaulR

BeckA

HeerklotzH

2007 Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15 915 927

76. DeN

PirruccelloM

KrastevaPV

BaeN

RaghavanRV

2008 Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6 e67 doi:10.1371/journal.pbio.0060067

77. FriedmanL

KolterR

2004 Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186 4457 4465

78. LeidJG

WillsonCJ

ShirtliffME

HassettDJ

ParsekMR

2005 The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175 7512 7518

79. ConwayBA

ChuKK

BylundJ

AltmanE

SpeertDP

2004 Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J Infect Dis 190 957 966

80. GodlewskaR

WisniewskaK

PietrasZ

Jagusztyn-KrynickaEK

2009 Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 298 1 11

81. UedaA

WoodTK

2009 Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5 e1000483 doi:10.1371/journal.ppat.1000483

82. BurrowesE

BaysseC

AdamsC

O'GaraF

2006 Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152 405 418

83. TschowriN

BusseS

HenggeR

2009 The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 23 522 534

84. MaL

ConoverM

LuH

ParsekMR

BaylesK

2009 Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5 e1000354 doi:10.1371/journal.ppat.1000354

85. CannonGJ

SwansonJA

1992 The macrophage capacity for phagocytosis. J Cell Sci 101 (Pt 4) 907 913

86. SpeertDP

WrightSD

SilversteinSC

MahB

1988 Functional characterization of macrophage receptors for in vitro phagocytosis of unopsonized Pseudomonas aeruginosa. J Clin Invest 82 872 879

87. GilbertP

DasJ

FoleyI

1997 Biofilm susceptibility to antimicrobials. Adv Dent Res 11 160 167

88. GordonCA

HodgesNA

MarriottC

1988 Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22 667 674

89. SpoeringAL

LewisK

2001 Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183 6746 6751

90. GilbertP

CollierPJ

BrownMR

1990 Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34 1865 1868

91. GirgisHS

LiuY

RyuWS

TavazoieS

2007 A comprehensive genetic characterization of bacterial motility. PLoS Genet 3 e154 doi:10.1371/journal.pgen.0030154

92. GiddensSR

JacksonRW

MoonCD

JacobsMA

ZhangXX

2007 Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proc Natl Acad Sci U S A 104 18247 18252

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#