Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.
Vyšlo v časopise:
Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000810
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000810
Souhrn
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.
Zdroje
1. FuquaC
ParsekMR
GreenbergEP
2001 Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35 439 468
2. JointI
Allan DownieJ
WilliamsP
2007 Bacterial conversations: talking, listening and eavesdropping. An introduction. Philos Trans R Soc Lond B Biol Sci 362 1115 1117
3. CornelisP
2008 Pseudomonas: Genomics and Molecular Biology;
CornelisP
244 Horizon Scientific Press
4. KirisitsMJ
ParsekMR
2006 Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8 1841 1849
5. SchusterM
GreenbergEP
2006 A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296 73 81
6. VenturiV
2006 Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30 274 291
7. HeurlierK
DenervaudV
HaasD
2006 Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296 93 102
8. SmithRS
IglewskiBH
2003 P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6 56 60
9. DubernJF
DiggleSP
2008 Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4 882 888
10. ShinerEK
RumbaughKP
WilliamsSC
2005 Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29 935 947
11. DézielE
GopalanS
TampakakiAP
LépineF
PadfieldKE
2005 The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55 998 1014
12. DézielE
LépineF
MilotS
HeJ
MindrinosMN
2004 Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101 1339 1344
13. RahmeLG
TanMW
LeL
WongSM
TompkinsRG
1997 Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94 13245 13250
14. CaoH
KrishnanG
GoumnerovB
TsongalisJ
TompkinsR
2001 A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98 14613 14618
15. RahmeLG
AusubelFM
CaoH
DrenkardE
GoumnerovBC
2000 Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97 8815 8821
16. XiaoG
HeJ
RahmeLG
2006 Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152 1679 1686
17. XiaoG
DézielE
HeJ
LépineF
LesicB
2006 MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62 1689 1699
18. WadeDS
CalfeeMW
RochaER
LingEA
EngstromE
2005 Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187 4372 4380
19. GallagherLA
McKnightSL
KuznetsovaMS
PesciEC
ManoilC
2002 Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184 6472 6480
20. DiggleSP
WinzerK
ChhabraSR
WorrallKE
CamaraM
2003 The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50 29 43
21. McGrathS
WadeDS
PesciEC
2004 Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230 27 34
22. LépineF
MilotS
DézielE
HeJ
RahmeLG
2004 Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15 862 869
23. LépineF
DekimpeV
LesicB
MilotS
LesimpleA
2007 PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis. Biol Chem 388 839 845
24. Soberon-ChavezG
Aguirre-RamirezM
OrdonezL
2005 Is Pseudomonas aeruginosa only “sensing quorum”? Crit Rev Microbiol 31 171 182
25. ZaborinaO
LépineF
XiaoG
ValuckaiteV
ChenY
2007 Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa. PLoS Pathog 3 e35 doi:10.1371/journal.ppat.0030035
26. DuanK
SuretteMG
2007 Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189 4827 4836
27. WagnerVE
FrelingerJG
BarthRK
IglewskiBH
2006 Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 14 55 58
28. WuL
EstradaO
ZaborinaO
BainsM
ShenL
2005 Recognition of host immune activation by Pseudomonas aeruginosa. Science 309 774 777
29. JensenV
LonsD
ZaouiC
BredenbruchF
MeissnerA
2006 RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188 8601 8606
30. GuinaT
WuM
MillerSI
PurvineSO
YiEC
2003 Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J Am Soc Mass Spectrom 14 742 751
31. CornelisP
AendekerkS
2004 A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150 752 756
32. YangL
BarkenKB
SkindersoeME
ChristensenAB
GivskovM
2007 Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153 1318 1328
33. BollingerN
HassettDJ
IglewskiBH
CostertonJW
McDermottTR
2001 Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183 1990 1996
34. KimEJ
WangW
DeckwerWD
ZengAP
2005 Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151 1127 1138
35. MasseE
ArguinM
2005 Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30 462 468
36. OchsnerUA
WildermanPJ
VasilAI
VasilML
2002 GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45 1277 1287
37. PalmaM
WorgallS
QuadriLE
2003 Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180 374 379
38. OchsnerUA
KochAK
FiechterA
ReiserJ
1994 Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176 2044 2054
39. VasilML
2007 How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20 587 601
40. CornelisP
MatthijsS
Van OeffelenL
2009 Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22 15 22
41. ViscaP
LeoniL
WilsonMJ
LamontIL
2002 Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45 1177 1190
42. SchusterM
LostrohCP
OgiT
GreenbergEP
2003 Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185 2066 2079
43. JuhasM
WiehlmannL
HuberB
JordanD
LauberJ
2004 Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150 831 841
44. JuhasM
WiehlmannL
SalunkheP
LauberJ
BuerJ
2005 GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett 242 287 295
45. OglesbyAG
FarrowJM3rd
LeeJH
TomarasAP
GreenbergEP
2008 The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283 15558 15567
46. BredenbruchF
GeffersR
NimtzM
BuerJ
HausslerS
2006 The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8 1318 1329
47. DiggleSP
MatthijsS
WrightVJ
FletcherMP
ChhabraSR
2007 The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14 87 96
48. ZaborinA
RomanowskiK
GerdesS
HolbrookC
LepineF
2009 Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A 106 6327 6332
49. VialL
LépineF
MilotS
GroleauMC
DekimpeV
2008 Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190 5339 5352
50. YuS
JensenV
SeeligerJ
FeldmannI
WeberS
2009 Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48 10298 10307
51. FarrowJM3rd
SundZM
EllisonML
WadeDS
ColemanJP
2008 PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190 7043 7051
52. MavrodiDV
BonsallRF
DelaneySM
SouleMJ
PhillipsG
2001 Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183 6454 6465
53. LesicB
RahmeLG
2008 Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9 20
54. HoganDA
KolterR
2002 Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296 2229 2232
55. KaleliI
CevahirN
DemirM
YildirimU
SahinR
2007 Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 50 74 78
56. KerrJR
1994 Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32 525 527
57. LauGW
GoumnerovBC
WalendziewiczCL
HewitsonJ
XiaoW
2003 The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71 4059 4066
58. ApidianakisY
PitsouliC
PerrimonN
RahmeL
2009 Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A
59. ApidianakisY
RahmeLG
2009 Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4 1285 1294
60. TiburziF
ImperiF
ViscaP
2008 Intracellular levels and activity of PvdS, the major iron starvation sigma factor of Pseudomonas aeruginosa. Mol Microbiol 67 213 227
61. HeinrichsDE
PooleK
1996 PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol 178 2586 2592
62. JuhasM
EberlL
TummlerB
2005 Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7 459 471
63. ZhengP
SunJ
GeffersR
ZengAP
2007 Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 132 342 352
64. GirardG
BloembergGV
2008 Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 3 97 106
65. BjarnsholtT
GivskovM
2007 The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 387 409 414
66. WinstanleyC
FothergillJL
2009 The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290 1 9
67. D'ArgenioDA
WuM
HoffmanLR
KulasekaraHD
DézielE
2007 Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64 512 533
68. BundyBM
CampbellAL
NeidleEL
1998 Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180 4466 4474
69. UrataM
MiyakoshiM
KaiS
MaedaK
HabeH
2004 Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186 6815 6823
70. HausslerS
BeckerT
2008 The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4 e1000166 10.1371/journal.ppat.1000166
71. HaasB
KrautJ
MarksJ
ZankerSC
CastignettiD
1991 Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59 3997 4000
72. RatledgeC
DoverLG
2000 Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54 881 941
73. LesicB
LépineF
DézielE
ZhangJ
ZhangQ
2007 Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3 e126 doi:10.1371/journal.ppat.0030126
74. RasmussenTB
GivskovM
2006 Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296 149 161
75. SchweizerHP
1992 Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6 1195 1204
76. MillerJH
1972 Experiments in molecular genetics. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory 352 355
77. SavliH
KaradenizliA
KolayliF
GundesS
OzbekU
2003 Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52 403 408
78. LépineF
DézielE
MilotS
RahmeLG
2003 A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622 36 41
79. EssarDW
EberlyL
HaderoA
CrawfordIP
1990 Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172 884 900
80. MavrodiDV
BlankenfeldtW
ThomashowLS
2006 Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44 417 445
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 3
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein Binds and Protects a Nuclear Noncoding RNA from Cellular RNA Decay Pathways
- Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors
- Perforin and IL-2 Upregulation Define Qualitative Differences among Highly Functional Virus-Specific Human CD8 T Cells
- Inhibition of Macrophage Migration Inhibitory Factor Ameliorates Ocular -Induced Keratitis