#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence


Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.


Vyšlo v časopise: Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence. PLoS Pathog 6(3): e32767. doi:10.1371/journal.ppat.1000810
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000810

Souhrn

Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.


Zdroje

1. FuquaC

ParsekMR

GreenbergEP

2001 Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35 439 468

2. JointI

Allan DownieJ

WilliamsP

2007 Bacterial conversations: talking, listening and eavesdropping. An introduction. Philos Trans R Soc Lond B Biol Sci 362 1115 1117

3. CornelisP

2008 Pseudomonas: Genomics and Molecular Biology;

CornelisP

244 Horizon Scientific Press

4. KirisitsMJ

ParsekMR

2006 Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8 1841 1849

5. SchusterM

GreenbergEP

2006 A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296 73 81

6. VenturiV

2006 Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30 274 291

7. HeurlierK

DenervaudV

HaasD

2006 Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296 93 102

8. SmithRS

IglewskiBH

2003 P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6 56 60

9. DubernJF

DiggleSP

2008 Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4 882 888

10. ShinerEK

RumbaughKP

WilliamsSC

2005 Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29 935 947

11. DézielE

GopalanS

TampakakiAP

LépineF

PadfieldKE

2005 The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55 998 1014

12. DézielE

LépineF

MilotS

HeJ

MindrinosMN

2004 Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101 1339 1344

13. RahmeLG

TanMW

LeL

WongSM

TompkinsRG

1997 Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94 13245 13250

14. CaoH

KrishnanG

GoumnerovB

TsongalisJ

TompkinsR

2001 A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98 14613 14618

15. RahmeLG

AusubelFM

CaoH

DrenkardE

GoumnerovBC

2000 Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97 8815 8821

16. XiaoG

HeJ

RahmeLG

2006 Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152 1679 1686

17. XiaoG

DézielE

HeJ

LépineF

LesicB

2006 MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62 1689 1699

18. WadeDS

CalfeeMW

RochaER

LingEA

EngstromE

2005 Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187 4372 4380

19. GallagherLA

McKnightSL

KuznetsovaMS

PesciEC

ManoilC

2002 Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184 6472 6480

20. DiggleSP

WinzerK

ChhabraSR

WorrallKE

CamaraM

2003 The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50 29 43

21. McGrathS

WadeDS

PesciEC

2004 Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230 27 34

22. LépineF

MilotS

DézielE

HeJ

RahmeLG

2004 Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15 862 869

23. LépineF

DekimpeV

LesicB

MilotS

LesimpleA

2007 PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis. Biol Chem 388 839 845

24. Soberon-ChavezG

Aguirre-RamirezM

OrdonezL

2005 Is Pseudomonas aeruginosa only “sensing quorum”? Crit Rev Microbiol 31 171 182

25. ZaborinaO

LépineF

XiaoG

ValuckaiteV

ChenY

2007 Dynorphin Activates Quorum Sensing Quinolone Signaling in Pseudomonas aeruginosa. PLoS Pathog 3 e35 doi:10.1371/journal.ppat.0030035

26. DuanK

SuretteMG

2007 Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189 4827 4836

27. WagnerVE

FrelingerJG

BarthRK

IglewskiBH

2006 Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol 14 55 58

28. WuL

EstradaO

ZaborinaO

BainsM

ShenL

2005 Recognition of host immune activation by Pseudomonas aeruginosa. Science 309 774 777

29. JensenV

LonsD

ZaouiC

BredenbruchF

MeissnerA

2006 RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188 8601 8606

30. GuinaT

WuM

MillerSI

PurvineSO

YiEC

2003 Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J Am Soc Mass Spectrom 14 742 751

31. CornelisP

AendekerkS

2004 A new regulator linking quorum sensing and iron uptake in Pseudomonas aeruginosa. Microbiology 150 752 756

32. YangL

BarkenKB

SkindersoeME

ChristensenAB

GivskovM

2007 Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153 1318 1328

33. BollingerN

HassettDJ

IglewskiBH

CostertonJW

McDermottTR

2001 Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 183 1990 1996

34. KimEJ

WangW

DeckwerWD

ZengAP

2005 Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151 1127 1138

35. MasseE

ArguinM

2005 Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30 462 468

36. OchsnerUA

WildermanPJ

VasilAI

VasilML

2002 GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45 1277 1287

37. PalmaM

WorgallS

QuadriLE

2003 Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180 374 379

38. OchsnerUA

KochAK

FiechterA

ReiserJ

1994 Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176 2044 2054

39. VasilML

2007 How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events. Biometals 20 587 601

40. CornelisP

MatthijsS

Van OeffelenL

2009 Iron uptake regulation in Pseudomonas aeruginosa. Biometals 22 15 22

41. ViscaP

LeoniL

WilsonMJ

LamontIL

2002 Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45 1177 1190

42. SchusterM

LostrohCP

OgiT

GreenbergEP

2003 Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185 2066 2079

43. JuhasM

WiehlmannL

HuberB

JordanD

LauberJ

2004 Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150 831 841

44. JuhasM

WiehlmannL

SalunkheP

LauberJ

BuerJ

2005 GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol Lett 242 287 295

45. OglesbyAG

FarrowJM3rd

LeeJH

TomarasAP

GreenbergEP

2008 The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283 15558 15567

46. BredenbruchF

GeffersR

NimtzM

BuerJ

HausslerS

2006 The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8 1318 1329

47. DiggleSP

MatthijsS

WrightVJ

FletcherMP

ChhabraSR

2007 The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14 87 96

48. ZaborinA

RomanowskiK

GerdesS

HolbrookC

LepineF

2009 Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A 106 6327 6332

49. VialL

LépineF

MilotS

GroleauMC

DekimpeV

2008 Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190 5339 5352

50. YuS

JensenV

SeeligerJ

FeldmannI

WeberS

2009 Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48 10298 10307

51. FarrowJM3rd

SundZM

EllisonML

WadeDS

ColemanJP

2008 PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190 7043 7051

52. MavrodiDV

BonsallRF

DelaneySM

SouleMJ

PhillipsG

2001 Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183 6454 6465

53. LesicB

RahmeLG

2008 Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9 20

54. HoganDA

KolterR

2002 Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296 2229 2232

55. KaleliI

CevahirN

DemirM

YildirimU

SahinR

2007 Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 50 74 78

56. KerrJR

1994 Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32 525 527

57. LauGW

GoumnerovBC

WalendziewiczCL

HewitsonJ

XiaoW

2003 The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 71 4059 4066

58. ApidianakisY

PitsouliC

PerrimonN

RahmeL

2009 Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A

59. ApidianakisY

RahmeLG

2009 Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nat Protoc 4 1285 1294

60. TiburziF

ImperiF

ViscaP

2008 Intracellular levels and activity of PvdS, the major iron starvation sigma factor of Pseudomonas aeruginosa. Mol Microbiol 67 213 227

61. HeinrichsDE

PooleK

1996 PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol 178 2586 2592

62. JuhasM

EberlL

TummlerB

2005 Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7 459 471

63. ZhengP

SunJ

GeffersR

ZengAP

2007 Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol 132 342 352

64. GirardG

BloembergGV

2008 Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 3 97 106

65. BjarnsholtT

GivskovM

2007 The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 387 409 414

66. WinstanleyC

FothergillJL

2009 The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290 1 9

67. D'ArgenioDA

WuM

HoffmanLR

KulasekaraHD

DézielE

2007 Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64 512 533

68. BundyBM

CampbellAL

NeidleEL

1998 Similarities between the antABC-encoded anthranilate dioxygenase and the benABC-encoded benzoate dioxygenase of Acinetobacter sp. strain ADP1. J Bacteriol 180 4466 4474

69. UrataM

MiyakoshiM

KaiS

MaedaK

HabeH

2004 Transcriptional regulation of the ant operon, encoding two-component anthranilate 1,2-dioxygenase, on the carbazole-degradative plasmid pCAR1 of Pseudomonas resinovorans strain CA10. J Bacteriol 186 6815 6823

70. HausslerS

BeckerT

2008 The pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4 e1000166 10.1371/journal.ppat.1000166

71. HaasB

KrautJ

MarksJ

ZankerSC

CastignettiD

1991 Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59 3997 4000

72. RatledgeC

DoverLG

2000 Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54 881 941

73. LesicB

LépineF

DézielE

ZhangJ

ZhangQ

2007 Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3 e126 doi:10.1371/journal.ppat.0030126

74. RasmussenTB

GivskovM

2006 Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296 149 161

75. SchweizerHP

1992 Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6 1195 1204

76. MillerJH

1972 Experiments in molecular genetics. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory 352 355

77. SavliH

KaradenizliA

KolayliF

GundesS

OzbekU

2003 Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52 403 408

78. LépineF

DézielE

MilotS

RahmeLG

2003 A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622 36 41

79. EssarDW

EberlyL

HaderoA

CrawfordIP

1990 Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172 884 900

80. MavrodiDV

BlankenfeldtW

ThomashowLS

2006 Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44 417 445

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#