A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.
Vyšlo v časopise:
A Large and Intact Viral Particle Penetrates the Endoplasmic Reticulum Membrane to Reach the Cytosol. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1002037
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1002037
Souhrn
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.
Zdroje
1. ChandranKNibertML 2003 Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol 11 374 382
2. TsaiB 2007 Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23 23 43
3. LiddingtonRCYanYMoulaiJSahliRBenjaminTL 1991 Structure of simian virus 40 at 3.8-A resolution. Nature 354 278 284
4. StehleTGamblinSJYanYHarrisonSC 1996 The structure of simian virus 40 refined at 3.1 A resolution. Structure 4 165 182
5. ChenXSStehleTHarrisonSC 1998 Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. Embo J 17 3233 3240
6. TsaiBGilbertJMStehleTLencerWBenjaminTL 2003 Gangliosides are receptors for murine polyoma virus and SV40. Embo J 22 4346 4355
7. EwersHRomerWSmithAEBaciaKDmitrieffS 2010 GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12 11 18; sup pp 11-12
8. PelkmansLKartenbeckJHeleniusA 2001 Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3 473 483
9. MercerJSchelhaasMHeleniusA 2010 Virus entry by endocytosis. Annu Rev Biochem 79 803 833
10. QianMTsaiB 2010 Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84 9840 9852
11. NorkinLCAndersonHAWolfromSAOppenheimA 2002 Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 76 5156 5166
12. SchelhaasMMalmstromJPelkmansLHaugstetterJEllgaardL 2007 Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131 516 529
13. DammEMPelkmansLKartenbeckJMezzacasaAKurzchaliaT 2005 Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J Cell Biol 168 477 488
14. QianMCaiDVerheyKJTsaiB 2009 A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5 e1000465
15. ForsterMLSivickKParkYNArvanPLencerWI 2006 Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation. J Cell Biol 173 853 859
16. BernardiKMForsterMLLencerWITsaiB 2008 Derlin-1 facilitates the retro-translocation of cholera toxin. Mol Biol Cell 19 877 884
17. LencerWITsaiB 2003 The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 28 639 645
18. ResnickJShenkT 1986 Simian virus 40 agnoprotein facilitates normal nuclear location of the major capsid polypeptide and cell-to-cell spread of virus. J Virol 60 1098 1106
19. LinWHataTKasamatsuH 1984 Subcellular distribution of viral structural proteins during simian virus 40 infection. J Virol 50 363 371
20. BrownDALondonE 1998 Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14 111 136
21. KartenbeckJStukenbrokHHeleniusA 1989 Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol 109 2721 2729
22. BabeLMBrewKMatsuuraSEScottWA 1989 Epitopes on the major capsid protein of simian virus 40. J Biol Chem 264 2665 2671
23. NakanishiAItohNLiPPHandaHLiddingtonRC 2007 Minor capsid proteins of simian virus 40 are dispensable for nucleocapsid assembly and cell entry but are required for nuclear entry of the viral genome. J Virol 81 3778 3785
24. LeeRJLiuCWHartyCMcCrackenAALatterichM 2004 Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. Embo J 23 2206 2215
25. MayerTUBraunTJentschS 1998 Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. Embo J 17 3251 3257
26. VembarSSBrodskyJL 2008 One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9 944 957
27. WaltonPAHillPESubramaniS 1995 Import of stably folded proteins into peroxisomes. Mol Biol Cell 6 675 683
28. MagnusonBRaineyEKBenjaminTBaryshevMMkrtchianS 2005 ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20 289 300
29. Rainey-BargerEKMagnusonBTsaiB 2007 A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 81 12996 13004
30. PloeghHL 2007 A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448 435 438
31. DanielsRRusanNMWadsworthPHebertDN 2006 SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24 955 966
32. DanielsRRusanNMWilbuerAKNorkinLCWadsworthP 2006 Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes. J Virol 80 6575 6587
33. NakanishiACleverJYamadaMLiPPKasamatsuH 1996 Association with capsid proteins promotes nuclear targeting of simian virus 40 DNA. Proc Natl Acad Sci U S A 93 96 100
34. NakanishiAShumDMoriokaHOtsukaEKasamatsuH 2002 Interaction of the Vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J Virol 76 9368 9377
35. ChromyLROltmanAEstesPAGarceaRL 2006 Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 80 5086 5091
36. LiPPItohNWatanabeMShiYLiuP 2009 Association of simian virus 40 vp1 with 70-kilodalton heat shock proteins and viral tumor antigens. J Virol 83 37 46
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex
- The OXI1 Kinase Pathway Mediates -Induced Growth Promotion in Arabidopsis
- The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes
- Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt